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This week’s post continues last week’s discussion of Markov chains and
mixing times, and introduces the idea of coupling as a method for estimating
mixing times. We remark that some nice notes on the subject of coupling
(and others) can be found on Steve Lalley’s web page – of particular relevance
for our purposes here are the notes on “Convergence rates of Markov chains”.
A more thorough and complete reference is the book Markov Chains and
Mixing Times by D. Levin, Y. Peres, and E. Wilmer.

1 Markov chains as stochastic processes

In the previous post, we characterised a Markov chain as a pair (S, P ), where
S is a finite or countable state space and P ∈ [0, 1]S×S is a matrix whose
entries pij represent the transition probabilities between the various states in
S. This then allowed us to interpret the Markov chain as a (deterministic)
map T : ∆ → ∆, where ∆ is the simplex of probability measures on S, and
the map T is given by right multiplication by the matrix P .

Another way to describe a Markov chain is using the language of stochas-
tic processes. A stochastic process is a sequence of random variablesXn : Ω→
S, where (Ω,F ,P) is a probability space. Such a process is said to be a
Markov chain with state space S and transition matrix P if for any i1, . . . , in+1 ∈
S, we have

P(Xn+1 = in+1 | Xk = ik for all 0 ≤ k ≤ n) = P(Xn+1 = in+1 | Xn = in).
(1)
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Note that there is a potential source of confusion here in the terminology – to
each pair (S, P ) we can associate many distinct stochastic processes satisfying
(1). Indeed, there is one such process (up to isomorphism) for every initial
probability distribution (the probabilities on X0). Thus whenever the term
“Markov chain” is used, here or in the literature, one should be careful to
determine whether or not the object defined refers to a single stochastic
process with specified initial distribution, or to a collection of stochastic
processes all evolving according to the same transition probabilities.

In the language of the previous post, this distinction takes the following
form: the pair (S, P ) determines a map T : ∆ → ∆, and the individual
stochastic processes just described correspond to fixing an initial distribution
p ∈ ∆ and considering the single trajectory of this map given by pn =
T n(p) = pP n. Thus “Markov chain” may refer either to a single orbit of this
map, or to the space of all orbits of the map.

We will not attempt to introduce new terminology to resolve this am-
biguity here. Rather, we shall let the context indicate which interpretation
is meant – “the Markov chain Xn” will refer to a single stochastic process
(including a fixed initial distribution), while “the Markov chain (S, P )” will
refer to the set of all stochastic processes distributed according to (1). We
will sometimes say that “Xn is a Markov chain over (S, P )” if it is a stochastic
process satisfying (1).

Although it is customary to refer to a random process simply by the
random variable Xn, we remark that a key ingredient in the process is the
probability distribution P on the measurable space (Ω,F). In our setting we
can always take Ω = SN to be the space of infinite sequences of states in S,
and then Xn : SN → S is simply the map that picks out the nth coordinate
of the sequence. We will adopt this convention throughout and will write PX

for the probability distribution on SN that is implicit in every mention of the
random variable Xn, and we will sometimes refer to PX as “a Markov chain
over (S, P )”.

2 Coupling

Consider a Markov chain (S, P ). We want to understand the mixing time of
this Markov chain – that is, if π is the stationary distribution and we write
pm

x for the distribution associated to starting in state x (with probability 1)
and evolving the Markov chain for m steps, then we want to understand the
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function
τ(ε) = min{m > 0 | dV (pm

x , π) < ε for all x ∈ S}, (2)

where we recall that dV is the total variation distance dV (µ, ν) = supA⊂S |µ(A)−
ν(A)|.

Roughly speaking, the idea behind coupling is to run two copies of the
Markov chain simultaneously in such a way that each copy obeys the original
transition probabilities, but the two copies nevertheless “communicate” in
such a way that they eventually mirror each other. Then the mixing time
τ(ε) can be estimated in terms of the probability that the two copies take at
least time τ before this mirroring begins.

Let us make this more precise. A coupling of the Markov chain (S, P ) is
a Markov chain Zn with state space S × S such that writing Zn = (Xn, Yn),
we have

P(Xn+1 = j | Zn = (i, i′)) = P(Xn+1 = j | Xn = i) = pij (3)

and similarly

P(Yn+1 = j′ | Zn = (i, i′)) = P(Yn+1 = j′ | Yn = i′) = pi′j′ . (4)

That is, both Xn and Yn are Markov chains over (S, P ). If we write Q for
the transition matrix on S × S that governs Zn, then (3) and (4) can be
translated into conditions on the coordinates of Q:∑

j′∈S

q(i,i′),(j,j′) = pij,
∑
j∈S

q(i,i′),(j,j′) = pi′j′ . (5)

Remark 1 One can also consider couplings where Zn is not required to be
a Markov chain, but only a stochastic process with state space S × S whose
marginal distributions are Markov chains over (S, P ). We will not use such
couplings, though.

Recall that we use the convention that the random variables Xn and
Yn are defined as the nth coordinate projections on SN, and Zn is defined
similarly on (S × S)N. Thus all of the information about the Markov chains
Xn, Yn, Zn is really carried by the probability distributions PX , PY on SN

and PZ on (S × S)N = (SN)× (SN).
The easiest way to produce a coupling is to let PX and PY be any Markov

chains over (S, P ), and then let PZ = PX × PY be the product measure on
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(S×S)N. This corresponds to running two copies of the Markov chain simul-
taneously and completely independently, without any interaction. However,
this is far from being the only coupling available, and indeed there are other
couplings that are far more useful for our applications. An important part
of the power of the coupling method is that we can choose any distribution
PZ which has PX and PY as its marginals – that is,

PX(A) = PZ(A× S), PY (A) = PZ(S × A). (6)

This allows us to introduce some dependence between Xn and Yn, and in
particular to carry out the following general scheme:

1. Define a coupling such that we eventually have Xn = Yn with proba-
bility 1 – that is, PZ(Xn = Yn)→ 1 as n→∞.

2. Bound the total variation distance dV (pm
x , π) that appears in (2) in

terms of PZ(Xm 6= Ym), where Xm is a Markov chain starting in state
x and Ym starts in the stationary distribution π.

3. Use this bound to estimate the mixing time τ(ε).

Before discussing how to bound total variation distance in terms of con-
vergence times for couplings, we describe an example that illustrates how the
two Markov chains Xn and Yn can be chosen to have some dependence.

Let (S, P ) be the Markov chain describing the top-down shuffle on a
deck of n cards, which we discussed last time. That is, S is the set of all
permutations of the n cards, and the transition probabilities are given by
pij = 1/n if j can be reached from i by removing a single card from the
deck and placing it on top, and pij = 0 otherwise. One can define a coupling
Zm = (Xm, Ym) as follows: the Markov chains Xm and Ym each progress from
one step to the next by selecting a random card from the deck and placing
it on top. Let Zm progress from one step to the next by selecting a single
card from the deck at random, and then moving that card to the top of the
deck for both Xm and Ym. Then it is clear that both Xm and Ym evolve
according to the transition probabilities pij, but the probability measure PZ

is not the direct product of PX and PY , because the chains do not evolve
independently.

Note that it is the card, and not the position, which is the same between
the two decks – in particular, after this process happens once, both decks Xm

and Ym have the same top card. After it happens twice, they have the same
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top two cards – unless at the second step we happen to pick the same card
we did at the first. In general, we may write a(m) for the number of cards
at the top of the deck which we know to agree between Xm and Ym. Then
a(0) = 0 and a(m) evolves according to the following rule: if a new card is
picked at step m (that has not been picked before), then a(m+1) = a(m)+1,
and otherwise a(m+ 1) = am.

In particular, we see that once every card in the deck has been chosen
at least once, we have a(m) = n, so that Xm = Ym. Later we will get an
estimate on the probability that every card has been chosen by time m, which
will let us estimate PZ(Xm = Ym). First we give an argument that this latter
probability gives us a bound on the total variation distance.

3 Total variation distance and couplings

Ultimately we want to estimate dV (µn, νn), where µn = T n(µ) and νn =
T n(ν) are the distributions at time n that result from the initial distributions
µ and ν. The key is the following lemma.

Lemma 2 Let Xn and Yn be Markov chains over (S, P ) with initial distri-
butions µ and ν, respectively. Let Zn = (Xn, Yn) be a coupling of Xn and Yn.
Then

dV (µn, νn) ≤ PZ(Xn 6= Yn). (7)

Proof: Given any A ⊂ S, we have

µn(A)− νn(A) = PZ(Xn ∈ A)− PZ(Yn ∈ A)

= PZ(Xn ∈ A, Yn /∈ A)− PZ(Yn ∈ A,Xn /∈ A)

≤ PZ(Xn ∈ A, Yn /∈ A)

≤ PZ(Xn 6= Yn).

�

In particular, if we take µ to be the initial distribution concentrated on
a single state x ∈ S, and ν to be the stationary distribution π, then Lemma
2 gives us the estimate

dV (pm
x , π) ≤ PZ(Xm 6= Ym), (8)

and so we have proved the following result.
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Proposition 3 Let Zn be a coupling of Markov chains Xn, Yn over (S, P ),
and let π be a stationary distribution for (S, P ). Suppose that T ∈ N is such
that for every x ∈ S, we have

PZ(XT 6= YT | X0 = x, Y0 distributed according to π) ≤ ε.

Then τ(ε) ≤ T .

4 Application to card shuffling

Now we can estimate the mixing time for the card shuffling example. Based
on Proposition 3, we can estimate τ(ε) by first estimating PZ(XT 6= YT ),
which as we saw above is the same as the probability that not every card has
been selected by time T . The problem of determining how long it takes for
this to happen is known as the coupon collector’s problem.

If we run the Markov chain for T steps, then the probability that a specific
card has not yet been selected to be moved to the top of the deck is(

1− 1

n

)T

≈ e−T/n.

Thus the probability that not every card has been selected is ≤ ne−T/n, and
we get

PZ(XT 6= YT ) ≤ ne−T/n.

Note that this is independent of the starting distributions for X0 and Y0. We
want to choose T such that this bound is ≤ ε, since then Proposition 3 will
give τ(ε) ≤ T . So we solve the inequality ne−T/n ≤ ε for T , and obtain

T ≥ −n log
( ε
n

)
= n log n− n log ε,

which gives the rough bound

τ(ε) ≤ n log
(n
ε

)
.

(Note that this bound depends on n being reasonably large.) For example,
when n = 52 and ε = .05, we get τ(ε) ≤ 361, indicating that 361 shuffles
(about 7 times the size of the deck) is enough to guarantee that for any event
we specify, the probability of that event when drawing from our shuffled deck
is within .05 of the probability when drawing from a truly random deck.
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