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This post is based on notes from Matt Nicol’s talk at the UH summer
school in dynamical systems. The goal is to present the ideas behind a
proof of the central limit theorem for dynamical systems using martingale
approximations.

1 Conditional expectation

Before we can define and use martingales, we must recall the definition of
conditional expectation. Let (Ω,P) be a probability space, with P defined on
a σ-algebra B. Let F ⊂ B be a sub-σ-algebra of B.

Example 1 Consider the doubling map T : [0, 1]→ [0, 1] given by T (x) = 2x
(mod 1). Let P be Lebesgue measure, B the Borel σ-algebra, and F = T−1B =
{T−1(B) | B ∈ B}. Then F is a sub-σ-algebra of B, consisting of precisely
those sets in B which are unions of preimage sets T−1(x) – that is, those sets
F ∈ B for which a point y ∈ [0, 1

2
] is in F if and only if y + 1

2
∈ F .

This example extends naturally to yield a decreasing sequence of σ-
algebras

B ⊃ T−1B ⊃ T−2B ⊃ · · · .

Given a sub-σ-algebra F ⊂ B and a random variable Y : Ω → R that is
measurable with respect to B, the conditional expectation of Y given F is
any random variable Z such that

1. Z if F -measurable (that is, Z−1(I) ∈ F for every interval I ⊂ R), and
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2.
∫
A
Z dP =

∫
A
Y dP for every A ∈ F .

It is not hard to show that these conditions characterise Z for an almost-sure
choice of ω ∈ Ω, and so the conditional expectation is uniquely defined as a
random variable. We write it as E[Y | F ].

A key property is that conditional expectation is linear: for every F ⊂ B,
every Y1, Y2 : Ω→ R, and every a ∈ R, we have

E[aY1 + Y2 | F ] = aE[Y1 | F ] + E[Y2 | F ].

Example 2 If Y is already F-measurable, then E[Y | F ] = Y .

Example 3 At the other extreme, if Y and F are independent – that is, if
E[Y 1A] = E[Y ]P[A] for every A ∈ F – then E[Y | F ] is the constant function
E[Y ]1.

Example 4 Suppose {Ωi | i ∈ N} is a countable partition of Ω such that
P[Ωi] > 0 for every i. Let F = σ(Ω1,Ω2, . . . ) be the σ-algebra generated by
the sets Ωi. Then

E[Y |F ] =
∑
i∈N

E[Y 1Ωi
]

P[Ωi]
1Ωi

.

2 Martingales

Now we can define martingales, which are a particular sort of stochastic
process (sequence of random variables) with “enough independence” to gen-
eralise results from the IID case.

Definition 1 A sequence Yn : Ω→ R of random variables is a martingale if

1. E[|Yn|] <∞ for all n;

2. there is an increasing sequence of σ-algebras (a filtration) F1 ⊂ F2 ⊂
· · · ⊂ B such that Yn is measurable with respect to Fn;

3. the conditional expectations satisfy E[Yn+1|Fn] = Yn.

The first condition guarantees that everything is in L1. If Fn is taken
to be the σ-algebra of events that are determined by the first n outcomes
of a sequence of experiments, then the second condition states that Yn only
depends on those first n outcomes, while the third condition requires that if
the first n outcomes are known, then the expected value of Yn+1 − Yn is 0.
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Example 5 Let Yn be a sequence of fair coin flips – IID random variables
taking the values ±1 with equal probability. Let Sn = Y1 + · · · + Yn. As
suggested in the previous paragraph, let Fn = σ(Y1, . . . , Yn) be the smallest
σ-algebra with respect to which Y1, . . . , Yn are all measurable. (The sets in
Fn are precisely those sets in B which are determined by knowing the values
of Y1, . . . , Yn.)

It is easy to see that Sn satisfies the first two properties of a martingale,
and for the third, we use linearity of expectation and the definition of Fn to
get

E[Sn+1|Fn] = E[Y1 + · · ·+ Yn|Fn] + E[Yn+1|Fn] = Sn + 0 = Sn.

When Yn is a sequence of random variables for which Sn = Y1 + · · ·+ Yn
is a martingale, we say that the sequence Yn is a martingale difference.

In the previous example the martingale property (the third condition) was
a direct consequence of the fact that the random variables Yn = Sn+1 − Sn
were IID. However, there are examples where the martingale differences are
not IID.

Example 6 Polya’s urn is a stochastic process defined as follows. Consider
an urn containing some number of red and blue balls. At each step, a single
ball is drawn at random from the urn, and then returned to the urn, along
with a new ball that matches the colour of the one drawn. Let Yn be the
fraction of the balls that are red after the nth iteration of this process.

Clearly the sequence of random variables Yn is neither independent nor
identically distributed. However, it is a martingale, as the following compu-
tation shows: suppose that at time n there are p red balls and q blue balls
in the urn. (This knowledge represents knowing which element of Fn we are
in.) Then at time n+ 1, there will be p+ 1 red balls with probability p

p+q
, and

p red balls with probability q
p+q

. Either way, there will be p+ q+ 1 total balls,
and so the expected fraction of red balls is

E[Yn+1|Fn] =
p

p+ q
· p+ 1

p+ q + 1
+

q

p+ q
· p

p+ q + 1

=
p(p+ q + 1)

(p+ q)(p+ q + 1)
=

p

p+ q
= Yn.

If we assume that the martingale differences are stationary (that is, iden-
tically distributed) and ergodic, then we have the following central limit the-
orem for martingales, from a 1974 paper of McLeish (we follow some notes
by S. Sethuraman for the statement).
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Theorem 2 Let Yi be a stationary ergodic sequence such that σ2 = E[Y 2
i ] <

∞ and E[Yn+1|Fn] = 0, where Fn is the σ-algebra generated by {Yi | 1 ≤ i ≤
n}. Then Sn =

∑n
i=1 Yi is a martingale, and Sn

σ
√
n

converges in distribution

to N(0, 1).

More sophisticated versions of this result are available, but this simple
version will suffice for our needs.

3 Koopman operator and transfer operator

Now we want to apply 2 to a dynamical system T : X → X with an ergodic
measure µ by taking Yi = ϕ ◦ T i for some observable ϕ : X → R.

To carry this out, we consider two operators on L2(µ). First we consider
the Koopman operator U : ϕ 7→ ϕ ◦ T . Then we define the transfer operator
P to be its L2 adjoint – that is,∫

(Pϕ)ψ dµ =

∫
ϕ(ψ ◦ T ) dµ (1)

for all ϕ, ψ ∈ L2. The key result for our purposes is that the operators P
and U are one-sided inverses of each other.

Proposition 3 Given ϕ ∈ L2, we have

1. PUϕ = ϕ;

2. UPϕ = E[ϕ|T−1B], where B is the σ-algebra on which µ is defined.

Proof: For the first claim, we see that for all ψ ∈ L2 we have∫
ψ · (PUϕ) dµ =

∫
(ψ ◦ T )(ϕ ◦ T ) dµ =

∫
ψϕdµ,

where the first equality uses the definition of P and the second uses the fact
that µ is invariant. To prove the second claim, we first observe that given an
interval I ⊂ R, we have

(PUϕ)−1(I) = T−1((Pϕ)−1(I)) ∈ T−1B,
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since P maps B-measurable functions to B-measurable functions. This shows
that PUϕ is T−1B-measurable, and it remains to show that∫

T−1B

UPϕdµ =

∫
T−1B

ϕdµ for all B ∈ B. (2)

This follows from a similar computation to the one above: given B ∈ B we
have∫

T−1B

UPϕdµ =

∫
((Pϕ) ◦ T ) · 1T−1B dµ =

∫
((Pϕ) ◦ T )(1B ◦ T ) dµ

=

∫
(Pϕ)1B dµ =

∫
ϕ · (1B ◦ T ) dµ =

∫
T−1B

ϕdµ,

which establishes (2) and completes the proof. �

We see from Proposition 3 that a function has zero conditional expecta-
tion with respect to T−1B if and only if it is in the kernel of P . In particular,
if Ph = 0 then

∑n
j=1 h◦T j is a martingale; this will be a key tool in the next

section.

Example 7 Let X = [0, 1] and T be the doubling map. Let µ be Lebesgue
measure. For convenience of notation we consider the L2 space of complex-
valued functions on X; the functions ϕn : x 7→ e2πinx form an orthonormal
basis for this space. A simple calculation shows that

Uϕn(x) = ϕn(2x) = e2πin(2x) = ϕ2n(x),

so U : ϕn → ϕ2n. For the transfer operator we obtain P : ϕ2n → ϕn, while
for odd values of n we have

Pϕn(x) =
1

2

(
ϕn

(x
2

)
+ ϕn

(
1 + x

2

))
=

1

2

(
eπinx + eπinxeπin

)
= 0.

4 Martingale approximation and CLT

The machinery of the Koopman and transfer operators from the previous
section can be used to apply the martingale central limit theorem to obser-
vations of dynamical systems via the technique of martingale approximation,
which was introduced by M. Gordin in 1969.
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The idea is that if Pnϕ→ 0 quickly enough for functions ϕ with
∫
ϕdµ =

0, then we can approximate the sequence ϕ ◦ T n with a martingale sequence
h ◦ T n.

More precisely, suppose that the sequence ‖Pnϕ‖2 is summable; then we
can define an L2 function g by

g =
∞∑
n=1

Pnϕ. (3)

Let h = ϕ+g−g◦T ∈ L2. We claim that Snh =
∑n

j=1 h◦T j is a martingale.
Indeed,

Ph = Pϕ+ P
∑
n≥1

Pnϕ− PU
∑
n≥1

Pnϕ,

and since PU is the identity we see that the last term is just
∑

nPnϕ, so
that Ph = 0.

Proposition 3 now implies that E[h|T−1B] = 0, and we conclude that Snh
is a martingale, so by the martingale CLT Snh

σ
√
n

converges in distribution to

N(0, 1), where σ2 = E[h2] =
∫
h2 dµ.

Now we want to apply this result to obtain information about ϕ itself,
and in particular about Snϕ =

∑n
j=1 ϕ ◦ T j. We have ϕ = h+ g ◦ T − g, and

so

Snϕ = Snh+
n∑
j=1

(g ◦ T j+1 − g ◦ T j) = Snh+ g ◦ T n+1 − g.

This yields
Snϕ

σ
√
n

=
Snh

σ
√
n

+
g ◦ T n+1 − g

σ
√
n

,

and the last term goes to 0 in probability, which yields the central limit
theorem for Snϕ.

Remark 4 There is a technical problem we have glossed over, which is that
the sequence of σ-algebras T−nB is decreasing, not increasing as is required
by the definition of a martingale. One solution to this is to pass to the
natural extension T̂ and to consider the functions h ◦ T̂−j and the σ-algebras
F̂j = T̂ jB. Another solution is to use reverse martingales, but we do not
discuss this here.
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Example 8 Let X = [0, 1] and T : X → X be an intermittent type (Manneville–
Pomeau) map given by

T (x) =

{
x(1− (2x)α) x ∈ [0, 1

2
),

2x− 1 x ∈ [1
2
, 1],

where 0 < α < 1 is a fixed parameter. It can be shown that T has a unique
absolutely continuous invariant probability measure µ, and that the transfer
operator P has the following contraction property: for every ϕ ∈ L2 with∫
ϕdµ = 0, there is C ∈ R such that ‖Pnϕ‖2 ≤ Cn−γ, where γ = 1

2
( 1
α
− 1).

For small values of α, this shows that ‖Pnϕ‖2 is summable, and conse-
quently µ satisfies the CLT by the above discussion.
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