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With the previous post on convergence of random variables, the law of
large numbers, and Birkhoff’s ergodic theorem as background, we return to
the spectral methods discussed in the first two posts in this series. This
post is based on Andrew Török’s talk from March 4 and gives a proof of the
central limit theorem using the spectral gap property.

1 Central limit theorem for IID

Now we recall the statement of the central limit theorem (CLT) and give a
proof in the case of IID (independent identically distributed) random vari-
ables.

The weak law of large numbers says that if Xn is a sequence of IID
random variables with E[Xn] = 0, then writing Sn =

∑n−1
k=0 Xk, the time

averages 1
n
Sn converge to 0 in probability, or equivalently (since the limit is

a constant), in distribution. In the case when σ2 = E[X2] < ∞, the central
limit theorem strengthens this to the result that the sequence 1√

n
Sn converges

in distribution to N(0, σ2), the normal distribution with mean 0 and variance
σ2. That is, we have

P
(

1√
n
Sn ≤ c

)
n→∞−−−→ 1

σ
√

2π

∫ c

−∞
e−t

2/2σ2

dt (1)

for every c ∈ R.
This can be established by the same method as we used last time for

the proof of the weak law of large numbers, by studying the characteristic
functions of 1√

n
Sn and N(0, σ2). The characteristic function of N(0, σ2) is

ψ(t) = e−
1
2
σ2t2 . (2)
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Arguing as in the proof of the weak law of large numbers in the previous
post, we write ϕn for the characteristic function of 1√

n
Sn and observe that

ϕn(t) = E[e
it 1√

n
(X1+···+Xn)] =

n∏
j=1

E[e
it√
n
Xj ] = ϕ

(
t√
n

)n
, (3)

where ϕ is the characteristic function of the Xj (which are identically dis-
tributed), and the second equality uses the fact that the Xj are independent.

Now by Taylor’s theorem, we have

ϕ(t/
√
n) = E[e

it√
n
Xj ] = 1 +

it√
n
E[Xj]−

t2

2n
E[X2

j ] + o(t2)

= 1− t2

2n
σ2 + o(t2),

using the fact that the Xj have mean 0 and variance σ2. Thus we conclude
from (3) that

ϕn(t) =

(
1− t2σ2

2n
+ o(t2)

)n
n→∞−−−→ e−

1
2
t2σ2

= ψ(t),

which completes the proof of the CLT in the IID case.

2 CLT with spectral gap

To translate the CLT into the language of dynamical systems, we consider
a space X and a map T : X → X with an invariant measure µ. In general
there may be many T -invariant measures, and so it is important to choose a
suitable measure µ. For example, when X is an interval and f is piecewise
expanding, we are most interested in the case when µ is an acip.

Given a measurable function f : X → R, the sequence of functions f , f◦T ,
f◦T 2, . . . defines a sequence of identically distributed random variables on X.
However, they are not independent, and so we need some information about
the decay of correlations between them. In particular, we can replicate the
proof from the previous section as long as the transfer operator has a spectral
gap.

Let’s make this precise in the case when T is a piecewise expanding in-
terval map, so the Lasota–Yorke inequality we discussed in an earlier post
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yields a spectral gap for the transfer operator PT acting on BV , the space
of functions of bounded variation, and in particular establishes the existence
of an acip µ.

Theorem 1 Let T be a piecewise expanding interval map and µ the acip
constructed before. Suppose that µ is mixing. Then µ satisfies the central
limit theorem as follows: given any f ∈ BV with

∫
f dµ = 0 and writing

Snf(x) =
∑n−1

k=0 f ◦ T k, we have

µ

{
x | 1√

n
Snf(x) ≤ c

}
n→∞−−−→ 1

σ
√

2π

∫ c

−∞
e−x

2/2σ2

dx (4)

for all c ∈ R, where σ is given by the Green–Kubo formula

σ2 =
∑
n∈Z

∫
X

f · (f ◦ T n) dµ, (5)

and σ = 0 if and only if there exists g ∈ BV and c ∈ R such that f =
c+ g ◦ T − g.

Before proving the theorem, we make some remarks concerning the Green–
Kubo formula (5). First, note that the sum converges as soon as we establish
exponential decay of correlations for functions in BV , since each integral in
the sum is just the correlation function at time n. Second, note that if we
replace the functions f ◦T n with independent random variables, then all the
terms with n 6= 0 vanish, and the n = 0 term is just the variance E[X2], as
in the previous section.

Note also that using (5), σ2 can be written as

σ2 = lim
n→∞

1

n

∫
(Snf)2 dµ.

Now we prove the central limit theorem (4). As in the IID case, we use
the characteristic functions

ψ(t) = e−σ
2t2/2,

ϕn(t) = Eµ[eit(Snf)/
√
n] =

∫
e

it√
n
Snf dµ,

where ψ(t) is the characteristic function of the normal distribution and ϕn is
the characteristic function of 1√

n
Snf , so it suffices to show that ϕn(t)→ ψ(t)

for all t.
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To prove this convergence of the characteristic functions, we use the fol-
lowing procedure.

1. Write the characteristic functions ϕn in terms of a twisted transfer
operator Pf,t, where f is the function we are investigating in the CLT,
and t ≈ 0 is a small real parameter. The operator Pf,t is a small
perturbation of the transfer operator PT .

2. Use perturbation theory of operators to show that Pf,t has a spectral
gap and to derive asymptotics for the leading eigenvalue λ(t). In par-
ticular, relate λ′(0) and λ′′(0) to the mean and variance of the limiting
distribution.

First we define the transfer operator itself by the implicit equation∫
(PTg) · h dµ =

∫
g · (h ◦ T ) dµ (6)

for all g ∈ L1(µ) and h ∈ L∞. Note that this is different from the transfer
operator defined by integrating with respect to Lebesgue measure in (6) –
it is a worthwhile exercise to determine the precise relationship between the
two.

More directly, the transfer operator can be defined by

PTg(x) =
∑

y∈T−1(x)

g(y)h(y)

|T ′(y)|
, (7)

where h is the density of µ with respect to Lebesgue measure.
Now given f ∈ BV and t ∈ R, we define the twisted transfer operator by

Pf,tg = PT (eitfg). (8)

To see the utility of this definition, we first note that∫
Pf,t(g) dµ =

∫
PT (eitfg)1 dµ =

∫
eitfg dµ,

and so by induction we have∫
Pnf,t(g) dµ =

∫
eitSnfg dµ.
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In particular, considering the characteristic function ϕn, we have

ϕn(t) =

∫
e

it√
n
Snf dµ =

∫
Pnf, t√

n
(1) dµ, (9)

which accomplishes the first stage of the proof – writing the characteristic
function in terms of the twisted transfer operator.

For the second stage of the proof, we consider the twisted transfer opera-
tor as a perturbation of PT . From the Lasota–Yorke inequality and the fact
that µ is mixing, we know that the spectrum of PT has the form {1} ∪ Z,
where Z is contained in a disc of radius r < 1 centred at the origin.

By the perturbation theory of linear operators, the spectrum of Pf,t has
the same form for small enough |t|: there is a leading eigenvalue λ(t) that is
close to 1, and the rest of the spectrum is contained in the disc of radius r.
Moreover, the leading eigenvalue satisfies (Edit: see the end of the post for a
proof)

λ′(0) =

∫
(if) dµ = 0

and

λ′′(0) = lim
n→∞

1

n

∫
(Sn(if))2 dµ = −σ2,

which is the origin of the expression in the Green–Kubo formula.
Now we use the Riesz functional calculus, whose general ideas we briefly

recall here. Let X be a Banach space and B(X) the space of bounded linear
operators on X. Given S ∈ B(X), let σ ⊂ C be the spectrum of S. Then
there is a unique way to associate to each analytic function g : σ → C an
operator g(S) such that the map g 7→ g(S) is a homomorphism mapping the
constant function to the identity operator and the identity function to S.

This mapping can be defined by integrating around a curve γ surrounding
the spectrum σ (this is similar to the Cauchy formula from complex analysis):

g(S) =
1

2πi

∫
γ

(S − zI)−1g(z) dγ,

where we recall that S− zI is invertible for all z in the resolvent C \σ. If we
take g to be the characteristic function of part of the spectrum, we obtain a
projection to the eigenspace associated with that part.

In particular, considering the operator Pf,t, we may set g = 1λ(t) and
obtain a projection Πt onto the eigenspace of λ(t). Similarly, setting g(z) =
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z1Z(t)(z), where Z(t) is the part of the spectrum contained in a disc of radius
r < 1, we get an operator Rt such that

ΠtRt = RtΠt = 0, ‖Rt‖BV < r.

Moreover, we have
Pf,t = λ(t)Πt +Rt,

which allows us to write the operator in (9) as

Pnf, t√
n

= λ

(
t√
n

)n
Π t√

n
+Rn

t√
n

=

(
1 + λ′(0)

t√
n

+
λ′′(0)

2

t2

n
+ o

(
t2

n

))n
Π t√

n
+Rn

t√
n

=

(
1− σ2t2

2n
+ o

(
t2

n

))n(
Π0 +O

(
t√
n

))
+Rn

t√
n

n→∞−−−→ e−t
2σ2/2Π0,

using the fact that ‖Rt‖BV < r < 1. Now (9) yields

ϕn(t)→ e−t
2σ2/2

∫
Π0(1) dµ = e−t

2σ2/2 = ψ(t),

which completes the proof of the CLT.

3 Proof of formulas for derivatives of λ

The formulas given above for λ′(0) and λ′′(0) were not explained. Here is a
derivation of these formulas.

Let gt be the eigenfunction of Pf,t corresponding to the eigenvalue λ(t).
That is, gt satisfies

PT (eitfgt) = λ(t)gt.

Multiplying by a test function h and integrating against µ gives∫
PT (eitfgt)h dµ = λ(t)

∫
gth dµ.

Recalling the definition of PT , this gives∫
(eitfgt)(h ◦ T ) dµ = λ(t)

∫
gth dµ. (10)
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Let g′t = d
dt
gt and g′′t = d2

dt2
gt. Then differentiating (10) with respect to t gives

∫
(if)(eitfgt)(h◦T ) dµ+

∫
(eitfg′t)(h◦T ) dµ = λ′(t)

∫
gth dµ+λ(t)

∫
g′th dµ.

(11)
Setting t = 0 and using the fact that λ(0) = 1 and g0 ≡ 1, we get∫

(if)(h ◦ T ) dµ+

∫
(q)(h ◦ T ) dµ = λ′(0)

∫
h dµ+

∫
(q)(h) dµ,

where we write q = d
dt
gt|t=0.

Putting h ≡ 1 gives the expression for λ′(0). Before finding λ′′(0), we
observe that the above equation can also be used to find

∫
qh dµ, which will

be important later on. Indeed, using the assumption that
∫
f dµ = 0, we

have λ′(0) = 0, and so the above equation becomes∫
(if)(h ◦ T ) dµ+

∫
(q)(h ◦ T ) dµ =

∫
(q)(h) dµ. (12)

Similarly, replacing h with the test functions h ◦ T k for k ≥ 1, (12) gives∫
(if)(h ◦ T 2) dµ+

∫
(q)(h ◦ T 2) dµ =

∫
(q)(h ◦ T ) dµ,∫

(if)(h ◦ T 3) dµ+

∫
(q)(h ◦ T 3) dµ =

∫
(q)(h ◦ T 2) dµ,

and so on. Observe that
∑

k≥1(q)(h ◦ T k) dµ converges because we have
exponential decay of correlations. Thus we may add the above equations
(infinitely many of them) and subtract this sum from both sides to obtain∫

qh dµ =
∑
k≥1

∫
(if)(h ◦ T k) dµ. (13)

Now we can find the expression for λ′′(0). Set h ≡ 1 in (11) and differen-
tiate to get∫ (

(if)2(eitfgt) + 2(if)(eitfg′t) + eitfg′′t )
)
dµ =

∫
(λ′′(t)gt+2λ′(t)g′t+λ(t)g′′t ) dµ.

(14)
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At t = 0 we see that the terms containing g′′t are equal, while λ′(0) = 0 by
the assumption that

∫
f dµ = 0, and so (14) gives∫

(−f 2) dµ+ 2

∫
(if)(q) dµ = λ′′(t). (15)

From (13), we have∫
(if)(q) dµ =

∑
k≥1

∫
(if)(if ◦ T k) dµ,

which together with (15) suffices to complete the proof of the expression for
λ′′(0).
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