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In the dynamics seminar here at Houston, we’re beginning a series of
expository talks on statistical properties of dynamical systems. This week’s
talk was given by Andrew Török and introduces some of the spectral methods
for transfer operators that prove useful. This post is basically a set of notes
from that talk, aiming to give an informal and accessible introduction to this
topic.

1 Observables, invariant measures, and mix-

ing

We consider dynamical systems T : X → X that are expected to exhibit
some sort of “chaotic” behaviour. Here X is generally a compact metric
space (today we’ll mostly consider X = [0, 1]) and T is continuous, or at
least piecewise continuous.

A measurable function ϕ : X → C is called an “observable”. The idea
is to consider the time series of functions {ϕ ◦ T k}k≥0, which for “chaotic”
systems resembles a sequences of random variables, with ϕ ◦ T k representing
the observation ϕ made at time k. But just how random is this sequence?
Is there a sense in which these random variables can really be treated as
random, independent, uncorrelated?

This is the central question in studying statistical properties of dynamical
systems. There are various results that hold for sequences of independent
identically distributed (IID) random variables, and it turns out that these
same results hold for many systems of interest.

Let’s make this a little more precise. If we flip a coin repeatedly (a
fundamental example of an IID sequence), the strong law of large numbers
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says that “almost surely” (that is, with probability 1), the fraction of flips
that turn up heads will converge to 1/2. One also has the central limit
theorem, which says that with the appropriate averaging, the probability
distribution that governs the number of heads that appear will converge to
a normal distribution.

The sequence of observations ϕ◦T k is certainly not IID – there are strong
correlations between ϕ and ϕ ◦ T k for small values of k. However, there are
many examples where this correlation decays as k →∞. For such examples
it is reasonable to ask if probabilistic results such as the strong law of large
numbers and the central limit theorem hold.

In order to make probabilistic statements – that is, to treat (X,ϕ ◦ T k)
as a probability space with a sequence of random variables – we must first
specify what measure we place on X. Let µ be a Borel probability measure
on X. The measure µ is said to be invariant if µ(T−1A) = µ(A) for every
Borel A ⊂ X. If we interpret A as the event x ∈ A (occuring at time 0), then
the requirement of invariance amounts to the condition that the probability
of the event A is the same at time 0 (that is, x ∈ A) as it is at any later
time k (that is, T kx ∈ A). Thus the sequence of random variables ϕ ◦ T k on
(X,µ) is identically distributed, and we only need to worry about the fact
that independence fails.

An equivalent definition of invariance is that
∫
ϕdµ =

∫
ϕ ◦ T dµ for

every ϕ ∈ L1(X,µ). Informally, this means that the expected value of the
observables ϕ◦T k are all the same – one obtains the same expected value for
an observation whether it is made at time 0 (that is,

∫
ϕdµ) or at some later

time k (that is,
∫
ϕ ◦ T k dµ). This duality between definitions in terms of

sets and definitions in terms of functions will continue to appear throughout
our discussion.

In fact, not much more is needed to obtain the first probabilistic state-
ment, the strong law of large numbers. An invariant measure µ is a ergodic
if any (and hence all) of the following three equivalent conditions hold:

1. every invariant set (A = T−1A) has measure 0 or 1;

2. every invariant function (ϕ = ϕ ◦ T ) is constant µ-a.e.;

3. µ cannot be written as a convex combination of two other invariant
measures.

The strong law of large numbers holds for any ergodic measure µ and inte-
grable observable ϕ ∈ L1(X,µ) – this is the Birkhoff ergodic theorem.
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What about the central limit theorem? For this we need something more.
Consider two events A,B ⊂ X. If the state of the system at time k was
completely independent of the state at time 0, then we would have µ(A ∩
T−kB) = µ(A)µ(B). Because we consider deterministic systems in which
there are short-term correlations, we do not usually have equality in this
relation – nevertheless we can ask for it to hold asymptotically, so that

lim
k→∞

µ(A ∩ T−kB) = µ(A)µ(B). (1)

A measure satisfying (1) is called mixing. An important part of establish-
ing the statistical behaviour of a system with respect to this measure is to
understand the rate of mixing – how quickly do the correlations decay?

The same duality mentioned above happens here as well – mixing can be
characterised in terms of functions (instead of sets) as the condition that

lim
k→∞

∫
(ϕ ◦ T k)ψ dµ =

(∫
ϕdµ

)(∫
ψ dµ

)
(2)

for every ϕ, ψ ∈ L2(X,µ). It turns out that this is a more useful formulation
when we wish to compute rates of mixing. The idea is that the convergence
in (2) happens exponentially quickly for observables ϕ, ψ taken from a “rea-
sonably nice” function space, while for more general classes of observables
(such as arbitrary elements of L2), and also for the setwise-defined mixing in
(1), the convergence can be arbitrarily slow.

For the time being, then, we can describe our goal as follows. The dy-
namical system (X,T ) may have a great many invariant measures, and by re-
stricting our attention to the ergodic measures, we guarantee that the strong
law of large numbers holds thanks to the Birkhoff ergodic theorem. Within
the class of ergodic measures, we want to find measures for which the corre-
lations between the observables ϕ ◦ T k decay exponentially, and for which a
central limit theorem (and hopefully other statistical laws) can be proved.

So far there has been no mention of anything “spectral”, despite the title
at the top. The comment above, that we will ultimately need to restrict
to some “reasonably nice” function space, suggests how it will enter. To the
map T : X → X is associated an induced operator on various function spaces.
We will study the spectral properties of this operator, and by choosing an
appropriate function space, we will be able to use these properties to deduce
various statistical properties.

3



2 Examples

First, though, it is high time for some examples. Both of our chief examples
at the present time are defined on the unit interval X = [0, 1]. The first
example is the doubling map T : x → 2x (mod 1) shown in Figure 1. This
map preserves Lebesgue measure and has T ′(x) = 2 everywhere. (More
precisely, almost everywhere, since T is discontinuous at x = 1/2.)

Figure 1: The doubling map T : x→ 2x (mod 1).

The second, more general, example, is a piecewise expanding interval
map such as the one shown in Figure 2. Here again X = [0, 1], but now
T : [0, 1] → [0, 1] comes from a more general class – the interval [0, 1] is
partitioned into finitely many intervals, and on each of these the map T is
C2 with |T ′| ≥ λ > 1. (For the reader familiar with such maps, note that
there is no Markov assumption.)

Figure 2: A piecewise expanding interval map.
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Lebesgue measure is a natural choice for the first example: it is invariant,
it can be shown to be ergodic, and when we speak of “choosing a point at
random from the interval”, the most natural interpretation is that we mean
at random with respect to Lebesgue measure.

What invariant measure should we use for the second example? The
map T certainly appears to be a plausible candidate for chaotic behaviour –
nearby points are driven apart exponentially fast – but in order to describe
the statistical properties of the system we need an invariant measure. In
particular, we would like an invariant measure µ that is absolutely continuous
with respect to Lebesgue measure, so that a result that is true for µ-a.e. point
x will also be true for Lebesgue-a.e. x. So how do we find an absolutely
continuous invariant probability measure? (The abbreviation acim or acip is
often used.)

Let M denote the set of absolutely continuous probability measures on
X = [0, 1], not necessarily invariant. Elements ofM correspond to functions
ψ ∈ L1(X,Leb) by the Radon–Nikodym theorem: the association is dµ =
ψ dx. We want to understand the maps that the dynamics T induces on both
the space of measuresM and the space of densities L1 – invariant measures
(densities) will correspond to fixed points of this map.

3 The transfer operator

To understand the dynamics that T induces on M, first note that the map
T induces an action on observables ϕ : X → C by sending ϕ to ϕ ◦ T – this
is called the Koopman operator or composition operator and is an important
tool in ergodic theory (once we have an invariant measure). So far, however,
we have no invariant measure. Note that a measure µ ∈ M given by dµ =
ψ dx is invariant if and only if

∫
(ϕ ◦ T ) · ψ dx =

∫
ϕ · ψ dx for every ϕ. In

particular, µ is invariant if and only if the corresponding density ψ is a fixed
point of the operator PT defined on L1(X,Leb) by the condition∫

(ϕ ◦ T ) · ψ dx =

∫
ϕ · (PTψ) dx for all ϕ ∈ L∞(X,Leb). (3)

The operator PT is called the transfer operator (or Ruelle operator), and
will be the central object of the spectral methods we are describing. We can
view PT as the action induced by T on the spaceM of absolutely continuous
measures. Note that in order for PT to be a bounded linear operator on L∞,
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the map T must be non-singular – that is, it cannot take a set of positive
measure to a set of measure 0.

Formally, (3) defines the transfer operator as the (right) adjoint of the
Koopman operator. One can verify that (3) determines PT uniquely, and
that moreover the action of PT can be described explicitly by

(PTψ)(x) =
∑

y∈T−1x

ϕ(y)

|T ′(y)|
. (4)

The utility of PT for us is two-fold: in the first place, as pointed out above,
absolutely continuous invariant measures correspond to fixed points of PT –
that is, eigenfunctions of PT with eigenvalue 1. Furthermore, by iterating
(3), the correlation functions on the left-hand side of (2) can be understood
in terms of the iterates PkTψ, and these in turn can be understood in terms of
spectral properties of PT apart from the eigenvalue 1. This is how knowledge
of the spectrum of PT will lead to information on decay of correlations and
other statistical properties: the eigenfunction corresponding to the largest
eigenvalue is the density of the absolutely continuous invariant measure, and
the presence of a spectral gap (defined below) between this eigenvalue and
smaller eigenvalues leads to exponential decay of PkTψ when

∫
ψ dx = 0.

4 Decay of correlations for the doubling map

To illustrate what happens, let us return to the example of the doubling map
T : x→ 2x (mod 1). Here we can write (4) explicitly as

(PTψ)(x) =
1

2

[
ψ
(x

2

)
+ ψ

(
1 + x

2

)]
. (5)

First we observe that the constant function 1 satisfies PT1 = 1, which cor-
responds to the fact that Lebesgue measure itself is invariant for T . So how
do we carry out the rest of the programme and use the iterates of PT to
establish a rate of convergence in (2)?

At this point we must confront openly a point that was mentioned in
passing earlier. If we consider PT as an operator on L1, then there is not
too much we can do. (More on this later, perhaps.) However, if we make a
“good” choice of a Banach space on which PT acts, then we will be able to
get good results. In some sense this is the central challenge of the spectral
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method for studying statistical properties of dynamical systems: to find a
good Banach space on which the transfer operator acts with a spectral gap.
While we will see momentarily that this is not too difficult for the interval
maps we are considering here, it turns out to be a much more substantial
challenge when we study more general classes of systems.

In the present setting we may consider the subspace Lip ⊂ L1 of all
Lipschitz continuous functions on [0, 1]. There is a natural semi-norm

|ψ|Lip = sup
x 6=y

|ψ(x)− ψ(y)|
|x− y|

,

which fails to be a norm only because it vanishes on all constant functions.
We can define a true norm by

‖ψ‖Lip = ‖ψ‖∞ + |ψ|Lip,

where ‖ψ‖∞ = supx |ψ(x)|.
For our purposes, the key property of the semi-norm | · |Lip is that it is

contracted by the operator PT .

Proposition 1 For the doubling map T and any Lipschitz function ψ we
have |PTψ|Lip ≤ 1

2
|ψ|Lip.

Proof: Using (5) we have

|PTψ|Lip = sup
x6=y

|(PTψ)(x)− (PTψ)(y)|
|x− y|

= sup
x6=y

1

2

|ψ(x1) + ψ(x2)− ψ(y1)− ψ(y2)|
|x− y|

,

where we write x1 = x
2
, x2 = 1+x

2
, and similarly for y1, y2. Now |xj − yj| =

1
2
|x− y| and so

|PTψ|Lip ≤ sup
x 6=y

1

4

[
|ψ(x1)− ψ(y1)|
|x1 − y1|

+
|ψ(x2)− ψ(y2)|
|x2 − y2|

]
≤ 1

2
|ψ|Lip.

�

Now we can address the question of decay of correlations in (2). Iterating
(3) gives ∫

(ϕ ◦ T k) · ψ dx =

∫
ϕ · (PkTψ) dx. (6)
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Every ψ ∈ Lip can be written as

ψ = cψ1 + ψ̂, (7)

where cψ =
∫
ψ dx and

∫
ψ̂ dx = 0. That is, there is a decomposition

Lip = C1⊕H, H =

{
ψ ∈ Lip |

∫
ψ dx = 0

}
. (8)

This decomposition is invariant under the action of PT : indeed, C1 is invari-
ant because PT1 = 1, and to see that H is invariant we use (3) to observe
that if

∫
ψ̂ dx = 0, then∫

PT ψ̂ dx =

∫
(1 ◦ T )ψ̂ dx =

∫
ψ̂ dx = 0.

It is not hard to show that any ψ̂ ∈ H satisfies ‖ψ̂‖∞ ≤ |ψ̂|Lip, because its

range ψ(X) ⊂ C has diameter ≤ |ψ̂|Lip and contains 0 in its convex hull.
Now we can estimate the rate of decay of the correlation quantity

Ck(ϕ, ψ) :=

∫
(ϕ ◦ T k) · ψ dx−

(∫
ϕdx

)(∫
ψ dx

)
. (9)

Using (6) and the decomposition (7) gives

Ck(ϕ, ψ) =

∫
ϕ · (PkT (cψ1 + ψ̂)) dx− cψ

∫
ϕdx

=

∫
ϕ · (PkT ψ̂) dx,

where the second equality uses the fact that PkT1 = 1. We estimate PkT ψ̂
using Proposition 1:

‖PkT ψ̂‖∞ ≤ |PkT ψ̂|Lip ≤ 2−k|ψ̂|Lip = 2−k|ψ|Lip,

and conclude that for any ϕ ∈ L1 and ψ ∈ Lip we have

|Ck(ϕ, ψ)| ≤ ‖ϕ‖1‖PkT ψ̂‖∞ ≤ 2−k‖ϕ‖1|ψ|Lip.

This means that for the doubling map, the convergence in (2) happens ex-
ponentially quickly provided the observables ϕ, ψ are sufficiently regular.
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5 Spectral properties

The above results for the doubling map are a particular case of the spectral
method, although we did not yet describe explicitly the role of the spectrum
of PT . Recall that the spectrum of the operator PT : Lip→ Lip is the set

σ(PT ) = {λ ∈ C | PT − λI is not an invertible operator on Lip},

which contains (but is not necessarily equal to) the set of eigenvalues of PT
(the point spectrum). We emphasise that this is a very general definition,
valid for any bounded linear operator on any Banach space, not just PT
acting on Lip. A basic fact in functional analysis is that the spectrum is
always compact and non-empty.

In the example above, the constant function 1 is an eigenfunction with
eigenvalue 1, and using this invariant decomposition Lip = C1⊕H from (8),
we have σ(PT ) = {1} ∪ σ(PT |H). That is, apart from the eigenvalue at 1,
the spectrum of PT is determined by its action on the subspace H.

Recall from functional analysis that if we write ρ(PT ) = sup{|λ| | λ ∈
σ(PT )} for the spectral radius of PT , we have

ρ(PT ) = lim
n→∞

‖PnT‖1/n ≤ ‖PT‖. (10)

To determine the spectrum of PT |H we can use either the Lipschitz norm
‖ · ‖Lip or the semi-norm | · |Lip, because on the subspace H the semi-norm
becomes a norm and the two are equivalent:

|ψ̂|Lip ≤ ‖ψ̂‖Lip = ‖ψ̂‖∞ + |ψ̂|Lip ≤ 2|ψ̂|Lip.

(This fails outside of H, where to apply (10) we would need to use ‖ · ‖Lip.)
From Proposition 1 and (10) we see that ρ(PT |H) ≤ 1

2
. Thus the spectrum

of PT has the structure shown in Figure 3: there is a single eigenvalue at 1,
and the rest of the spectrum is contained in the disc with centre 0 and radius
1/2.

Going beyond the doubling map to such examples as the piecewise ex-
panding interval maps discussed above, the goal is to carry out a similar
procedure by finding a suitable Banach space B of functions on which the
transfer operator acts with a spectral gap: that is, where there is a single
eigenvalue (or at most finitely many) lying on the unit circle, and the rest of
σ(PT ) is contained in a disc of radius ρ < 1. Then one is able to draw the
following conclusions.
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Figure 3: A gap in the spectrum of PT .

1. The eigenfunction(s) corresponding to the eigenvalue 1 are the densities
for the absolutely continuous invariant measures.

2. Given any r ∈ (ρ, 1), there is a constant Cr such that ‖PkT‖B ≤ Crr
k,

and so the correlations Ck(ϕ, ψ) decay like rk when the observables ϕ
and ψ are chosen from suitable function spaces.

Eventually it is also interesting to consider a more general class of transfer
operators associated to potential functions for which the largest eigenvalue
may not be 1, but first we will spend some time (in the next few posts)
developing the general theory of how one can prove the existence of a spectral
gap for piecewise expanding interval maps.

10


	Observables, invariant measures, and mixing
	Examples
	The transfer operator
	Decay of correlations for the doubling map
	Spectral properties

