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Introduction Classical theory Constraints and obstructions Applications

Thermodynamic formalism

Let (X , σ) be a shift space on a finite alphabet. Then it has a
measure of maximal entropy (MME). (Maximizes hµ(σ))

1 For which classes of shifts is the MME unique?

2 Does the MME have exponential decay of correlations (EDC)?

3 What about equilibrium states for non-zero potentials?
(Maximize hµ(σ) +

∫
ϕ dµ)

Connections to smooth dynamics: for uniformly hyperbolic
diffeomorphisms, physically relevant invariant measures arise as
equilibrium states for the “geometric potential”, and display strong
stochastic properties.

Goal is to develop techniques that extend this theory for
non-uniformly hyperbolic systems.
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Subshifts of finite type / Markov shifts

A (finite alphabet)  A∗ =
⋃

n≥0 A
n = {finite words over A}

X ⊂ AN a shift space if closed and σ-invariant

Language is L = {x[i ,j) = xixi+1 · · · xj−1 | x ∈ X , i ≤ j} ⊂ A∗

x ∈ X ⇔ x[i ,j) ∈ L for all i ≤ j

X is Markov if there is n s.t. x ∈ X iff x[i ,j) ∈ L whenever j ≤ i +n

When n = 2, present X via transition matrix or graph

Theorem (Parry, Ruelle, Sinai, Bowen – 60s and 70s)

If X is a transitive Markov shift (SFT), then

1 there is a unique MME µ;

2 µ has EDC (up to a period);

3 same is true for every Hölder potential.
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Non-Markov shifts

Even if X is not Markov, it may still admit a tower:

Σ a countable-state Markov shift; (need recurrence)

π : Σ→ X a shift-commuting map. (need eq. states to lift)

Example

Fix β > 1. Let X be the coding space for
fβ : x 7→ βx (mod 1). This β-shift is typically
not Markov, but admits a tower.

fβ(x)

x0 1 2

Every Lipschitz potential on a β-shift has a unique ES, with EDC.
(Hofbauer 1978, Walters 1978)



Introduction Classical theory Constraints and obstructions Applications

Non-Markov shifts

Even if X is not Markov, it may still admit a tower:

Σ a countable-state Markov shift; (need recurrence)

π : Σ→ X a shift-commuting map. (need eq. states to lift)

Example

Fix β > 1. Let X be the coding space for
fβ : x 7→ βx (mod 1). This β-shift is typically
not Markov, but admits a tower.

fβ(x)

x0 1 2

Every Lipschitz potential on a β-shift has a unique ES, with EDC.
(Hofbauer 1978, Walters 1978)



Introduction Classical theory Constraints and obstructions Applications

Thermodynamics and towers

Let Σ be ctbl-state Markov and π : Σ→ X shift-commuting, 1-1.

Inducing on a state B in Σ gives Σ as a suspension over a
countable-state full shift – this is the ‘tower’ referred to.

Theorem (Sarig, Young – 1990s)

If ϕ is Hölder and Σ is strongly positive recurrent (SPR) w.r.t.
ϕ ◦ π, then it has a unique equilibrium state µ. Moreover, the
tower has exponential tails w.r.t. µ, and thus µ has EDC.

Warning: π need not be onto.

Definition

(X , ϕ) has an SPR model if there are Σ, π as above s.t. (Σ, ϕ ◦ π)
is SPR and every ES µ for (X , ϕ) has µ(πΣ) = 1.

SPR model for a Hölder ϕ ⇒ uniqueness and EDC.
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Specification

Alternate approach to uniqueness given by specification property.

Definition

A language L has specification if there is τ ∈ N such that for every
u, v ∈ L, there is w ∈ L with |w | ≤ τ such that uwv ∈ L.

Without restriction on |w |, this is just topological transitivity

Theorem (Bowen - 1974)

If the language of a shift X has specification, then every Hölder ϕ
has a unique equilibrium state µϕ.

Bowen’s result does not guarantee correlations decay exponentially.

Theorem (C., following Bertrand & Thomsen)

If the language of a shift X has specification, then (X , ϕ) has an
SPR model for every Hölder ϕ. Thus µϕ has EDC.
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Specification to synchronisation to a tower

Most of the work for this theorem done previously:

1 A. Bertrand 1988: if L has specification then it has a
synchronising word w (if uw ∈ L and wv ∈ L then uwv ∈ L)

2 K. Thomsen 2006: if L has a synchronising word w , and if
omitting all appearances of w gives a language L′ with
smaller entropy, then there is an SPR model

Key idea: study entropy of part of the language, compare to whole

Definition

Given D ⊂ L, let Dn = {w ∈ D : |w | = n}. The entropy of D is

h(D) = lim sup
n→∞

1

n
log #Dn
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Shifts of quasi-finite type

Buzzi (2005) introduced the following generalization of SFTs. Let
X be a shift and L its language. The left and right constraints are

C` := {aw ∈ L | a ∈ A,w ∈ A∗, and ∃v ∈ L s.t. wv ∈ L, awv /∈ L}
Cr := {wa ∈ L | w ∈ A∗, a ∈ A, and ∃v ∈ L s.t. vw ∈ L, vwa /∈ L}

X is Markov iff there is n such that C`n = Crn = ∅.

Definition

X is of quasi-finite type (QFT) if min{h(C`), h(Cr )} < h(L).

Theorem (Buzzi 2005)

QFTs have countable-state Markov models with SPR components.
Transitive QFTs can have multiple MMEs.
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Non-uniform specification

QFTs generalise SFTs: constraints may be non-empty, but must
be thermodynamically small. Similar idea for specification. . .

Definition

A decomposition of L is a choice of Cp,G, Cs ⊂ L s.t. L = CpGCs .

Then every word in L can be written as uvw for some choice of
u ∈ Cp, v ∈ G, w ∈ Cs . In particular, L =

⋃
M GM , where

GM = {uvw ∈ L | u ∈ Cp, v ∈ G,w ∈ Cs , |u|, |w | ≤ M}

Theorem (C.–Thompson 2012)

Suppose L(X ) has a decomposition such that

1 GM has specification for every M

2 h(Cp ∪ Cs) = max{h(Cp), h(Cs)} < h(L)

Then X has a unique MME µ.
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Application to β-shifts and factors

Cp = ∅
G: paths starting and ending at B

Cs : paths that never return to B

Then h(Cp ∪ Cs) = 0; same holds for all factors.

Theorem (C.–Thompson 2012)

Every subshift factor of a β-shift has a unique MME.

Theorem (Walters 1978, C.–Thompson 2013)

Every Hölder potential on a β-shift has a unique ES, with EDC.

1 Does the unique MME of a β-shift factor have EDC?

2 What about non-zero potentials?
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Getting a tower

Theorem (C. 2016)

Suppose L(X ) has a decomposition CpGCs such that

1 G has specification

2 h(Cp ∪ Cs) = max{h(Cp), h(Cs)} < h(L)

3 if uvw ∈ L and uv , vw ∈ G, then v , uvw ∈ G (if v is long)

Then X has an SPR model. In particular, it has a unique MME,
and this MME has EDC.

Examples:

Every subshift factor of a β-shift has such a decomposition.

If X is a transitive QFT for which both C` and Cr have small
entropy, then it admits such a decomposition.

Same true for topologically exact QFTs with h(C`) < h(L).
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Almost specification

C.–Thompson approach was motivated by M. Boyle’s open problem
list: K. Thomsen asked if factors of β-shifts have unique MMEs.

Original (failed) attempt used almost specification:

∃ g(n) = o(n) s.t. ∀ u1, u2 ∈ L ∃ u′1, u
′
2

s.t. u′1u
′
2 ∈ L and dH(ui , u

′
i ) ≤ g(|ui |).

Theorem (Kulczycki–Kwietniak–Oprocha 2014, Pavlov 2016)

Almost specification 6⇒ unique MME. (Even g ≡ 4 not enough.)

Theorem (C.–Pavlov 2016)

If X has almost specification with g ≡ 1, or one-sided almost
specification with g bounded, then it has an SPR model.
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Non-zero potentials

SFTs, β-shifts, and S-gap shifts have a curious property.

Theorem

If X is an SFT, a β-shift, or an S-gap shift, then every Hölder
potential is hyperbolic: all equilibrium states have h(µ) > 0.

This property does not hold universally.

Example (Conrad 2013)

Let X = {0n1n | n ∈ N}Z and ϕ = tχ[1]. Then

L(X ) has a decomposition with h(Cp ∪ Cs) < h(L)

for large t, δ1 is the unique ES for tϕ

there is t0 such that t0ϕ has multiple equilibrium states
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Hölder (sometimes) implies hyperbolic

Given g : N→ N, say that L is g -Hamming approachable by G if
every w ∈ L has w ′ ∈ G with dH(w ,w ′) ≤ g(|w |).

Theorem (C.–Cyr)

If g satisfies g(n)
log n → 0, and L is g -Hamming approachable by some

G with specification, then every Hölder potential is hyperbolic.

Application: if X is a subshift factor of a β-shift, then every Hölder
potential on X has a unique equilibrium state, which has EDC.

Open question: what about the coding spaces for x 7→ α + βx?
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The non-symbolic setting

Similar results hold for non-symbolic systems: X a compact metric
space, f : X → X continuous, ϕ : X → R continuous.

Replace L with X × N (space of finite orbit segments)

(x , n)! x , f (x), f 2(x), . . . , f n−1(x)

Ask for Cp,G, Cs ⊂ X × N such that

every (x , n) has p, g , s ∈ N0 such that p + g + s = n,
(x , p) ∈ Cp, (f px , g) ∈ G, and (f p+gx , s) ∈ Cs

every GM has specification

ϕ has the Bowen property (bounded distortion) on G
P(Cp ∪ Cs , ϕ) < P(X , ϕ)

Together with weak expansivity condition, this gives uniqueness.
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Other applications

Theorem (C.–Fisher–Thompson 2015)

For every Hölder continuous ϕ : T4 → R there is a C 1-open set of
diffeos f : T4 → T4 (given by Bonatti and Viana) such that

f has a dominated splitting but is not partially hyperbolic

(T4, f , ϕ) has a unique equilibrium state

TxT4 splits into non-uniformly expanding and contracting Eu, E s .

E

E

s

u

p g

s

Similar approach works for geodesic flow on rank one manifolds of
non-positive curvature (Burns–C.–Fisher–Thompson)


	Introduction
	Classical theory
	Constraints and obstructions
	Applications

