▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Counting closed geodesics on surfaces without conjugate points

Vaughn Climenhaga

University of Houston

September 20, 2021

Joint work with Gerhard Knieper (Bochum) and Khadim War (IMPA)

Geodesic flows without conjugate points 0000000

Exponential growth rates for closed geodesics

M = closed connected Riemannian manifold $G(t) = \{$ closed geodesics on M with length $\leq t \}$ What can we say about #G(t) as $t \to \infty$?

Three levels of results in negative curvature:

First:
$$\frac{1}{t} \log \# G(t) \to h > 0$$
 $\#G(t) = c(t)e^{ht}$
 $c(t)$ is subexponentialSecond: $\frac{A}{t}e^{ht} \le \#G(t) \le \frac{B}{t}e^{ht}$ $tc(t)$ bounded away
from 0 and ∞ Third:
Margulis $\#G(t) \sim \frac{e^{ht}}{ht}$ (ratio of sides $\to 1$) $tc(t) \to \frac{1}{h}$ (True in any dimension
New results later are two-dimensional.)

Geodesic flows without conjugate points 0000000

Main result: same estimates for "no conjugate points"

 $M = \text{closed connected surface with genus} \ge 2$ $G(t) = \{\text{closed geodesics on } M \text{ with length} \le t\}$

Negative curvature (Margulis 1970): $\#G(t) \sim \frac{e^{ht}}{ht}$

•
$$f(t) \sim g(t)$$
 means $rac{f(t)}{g(t)}
ightarrow 1$ as $t
ightarrow \infty$

In general, can have continuum of closed geodesics (flat cylinder), so let $P(t) = \{ \text{free homotopy classes in } G(t) \}$

Theorem (C., Knieper, War, to appear in *Comm. Contemp. Math.*) No conjugate points $\Rightarrow \#P(t) \sim \frac{e^{ht}}{ht}$ (dim 2, some higher-dim)

Geodesic flows without conjugate points 0000000

From geometry to dynamics; geodesic flow and curvature

 $\phi^t \colon SM \to SM$ geodesic flow on unit tangent bundle

$$v \in SM \iff c_v$$
 geodesic with $\dot{c}_v(0) = v \iff \phi^t(v) := \dot{c}_v(t)$

K > 0 K = 0 K < 0

Geodesic flows without conjugate points

Constant negative curvature and scaling of leaf measures

Constant negative curvature: universal cover is hyperbolic plane $\mathbb{H} = \{x + iy : y > 0\}$ with Riemannian metric proportional to $\frac{\text{Euc}}{y}$

Normal vector fields to horocycles are uniformly contracted by $\phi^{\pm t}$, giving an Anosov splitting $TS\mathbb{H} = E^u \oplus E^s \oplus E^0$ (flow direction)

Let m^s , m^u be Lebesgue measure along stable/unstable leaves, then

$$m^u(\phi^t A) = e^{ht}m^u(A)$$
 and $m^s(\phi^t A) = e^{-ht}m^s(A)$

The product $m^u \times m^s \times \text{Leb}$ gives Liouville measure on *SM*.

Margulis leaf measures

Variable negative curvature still gives a topologically mixing Anosov flow, but Lebesgue measure may not scale by

$$m^u(\phi^t A) = e^{ht}m^u(A)$$
 and $m^s(\phi^t A) = e^{-ht}m^s(A)$ (*)

For **any** Anosov flow, Margulis built m^u , m^s satisfying (*), where now *h* is topological entropy (growth rate of (t, ϵ) -separated set)

- Fixed point argument on an appropriate space (Margulis 1970)
- Can also use Hausdorff measure in appropriate metric (Hamenstädt 1989, Hasselblatt 1989, ETDS)
- Interpretation via Bowen's alternate definition of entropy (C.-Pesin-Zelerowicz BAMS 2019, also C. arXiv:2009.09260)
- For geodesic flow can also use Patterson-Sullivan approach

 $m = m^u \times m^s \times \text{Leb}$ is flow-invariant Bowen–Margulis measure

Geodesic flows without conjugate points

Properties of Bowen–Margulis measure

$$m^u(\phi^t A) = e^{ht}m^u(A)$$
 and $m^s(\phi^t A) = e^{-ht}m^s(A)$ (*)

For a topologically mixing Anosov flow, the Bowen–Margulis measure $m = m^u \times m^s \times \text{Leb}$ has the following properties.

- Mixing (can use Hopf argument and product structure)
- Unique measure of maximal entropy (Adler, Weiss, Bowen)
- Equidistribution: given $\epsilon > 0$, let

$$C(t) = \{ \text{periodic orbits with period in } (t - \epsilon, t] \}$$
$$\nu_t = \frac{1}{\#C(t)} \sum_{c \in C(t)} \frac{1}{t} \operatorname{Leb}_c$$

Periodic orbit measures $\nu_t \xrightarrow{\text{weak}^*} m$ as $t \to \infty$ (Equidistribution follows from uniqueness if periodic orbits are separated and $\lim_{t\to\infty} \frac{1}{t} \log \#C(t) = h$)

Geodesic flows without conjugate points

Three levels of counting estimates

 $P(t) = \{\text{per. orbits : per. } \leq t\}$ $N(t) = \max \#((t, \epsilon)\text{-sep. set})$

Growth rate:
$$h = \lim_{t \to \infty} \frac{1}{t} \log N(t) = \lim_{t \to \infty} \frac{1}{t} \log \# P(t)$$
 closing lemma

Uniform counting estimates: (crucial for uniqueness) (Fekete: $a_{k+n} \le a_k + a_n \implies \frac{a_n}{n} \rightarrow \inf \frac{a_n}{n} =: h \implies a_n \ge nh$) $N(s+t) = C^{\pm 1}N(s)N(t)$ ("quasi-sub/supermultiplicative") gives

$$Ae^{ht} \leq N(t) \leq Be^{ht} \quad \Rightarrow \quad \frac{A'}{t}e^{ht} \leq \#P(t) \leq \frac{B'}{t}e^{ht}$$

Margulis estimates: $\#P(t) \sim \frac{e^{ht}}{ht}$, ie., $A', B' \to \frac{1}{h}$ as $t \to \infty$

Sketch of (modified) proof of Margulis estimates

Eventual goal: Estimate the cardinality of

 $C(t) = \{ periodic orbits with period in (t - \epsilon, t] \}$

and sum to get cardinality of P(t) (becomes integral as $\epsilon \to 0$). Use periodic orbit measures ν_t and Bowen–Margulis measure m.

Step 1. Use local product structure to define flow box *B* with depth ϵ (in flow direction) and slice/slab *S* with depth ϵ^2

We will study the quantity

$$\nu_t(B) = \frac{1}{t \# C(t)} \sum_{c \in C(t)} \text{Leb}_c(B)$$
$$= \frac{\epsilon}{t \# C(t)} \sum_{c \in C(t)} (number \text{ of times } c \text{ crosses } B)$$

Geodesic flows without conjugate points 0000000

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Closing lemma and components of intersection (ν_t)

Goal: Estimate $\#C(t) = \#\{\text{per. orbits with period in } (t - \epsilon, t]\}$ via $\nu_t(B) = \frac{\epsilon}{t \#C(t)} \sum_{c \in C(t)} (\text{number of times } c \text{ crosses } B)$

Step 2. Let $\Gamma(t) = \{$ connected components of $S \cap \phi^{-t}B \}$. The closing lemma gives a correspondence between $\Gamma(t)$ and the orbit segments in which an element of *c* crosses *B*. Thus

$$\nu_t(B) \approx \frac{\epsilon}{t} \frac{\#\Gamma(t)}{\#C(t)}$$

Geodesic flows without conjugate points 0000000

Scaling of leaf measures, and mixing property (m)

 $C(t) = \{\text{per. orbits with per. in } (t - \epsilon, t]\}$ $\Gamma(t) = \{\text{conn. comp. of } S \cap \phi^{-t}B\}$

$$u_t(B) \approx rac{\epsilon}{t} rac{\#\Gamma(t)}{\#C(t)}$$

Now we estimate $m(S \cap \phi^{-t}B)$ in two different ways...

Step 3. $m = m^u \times m^s \times \text{Leb}$ and $m^{u,s}$ scale by e^{ht} , so nearly every component A in $\Gamma(t)$ has $m(A) = e^{-ht}m(S)$, giving

$$m(S \cap \phi^{-t}B) \approx \#\Gamma(t)e^{-ht}m(S)$$

Step 4. *m* is mixing, so $m(S \cap \phi^{-t}B) \to m(S)m(B)$, giving

 $m(S)m(B) \approx \#\Gamma(t)e^{-ht}m(S) \Rightarrow m(B) \approx e^{-ht}\#\Gamma(t)$

Main result and background

Counting estimates for Anosov flows 000000

Geodesic flows without conjugate points 0000000

Equidistribution (both ν_t and m)

$$C(t) = \{\text{per. orbits with per. in } (t - \epsilon, t]\}$$

$$\Gamma(t) = \{\text{conn. comp. of } S \cap \phi^{-t}B\}$$

$$u_t(B) \approx \frac{\epsilon}{t} \frac{\#\Gamma(t)}{\#C(t)}$$

$$m(B) \approx e^{-ht} \# \Gamma(t) \quad \Rightarrow \quad \# \Gamma(t) \approx m(B) e^{ht}$$

Preliminary estimate of #C(t) by combining the above:

$$\#C(t) \approx \frac{\epsilon}{t} \frac{\#\Gamma(t)}{\nu_t(B)} \approx \frac{\epsilon}{t} \frac{m(B)}{\nu_t(B)} e^{ht} \Rightarrow \lim_{t \to \infty} \frac{1}{t} \log \#C(t) = h \quad (1)$$

Step 5. General argument as in proof of variational principle uses this estimate to show that every limit point of $(\nu_t)_{t\to\infty}$ is an MME, and uniqueness gives equidistribution result $\nu_t \to m$. Then the first part of (1) gives $\#C(t) \approx \frac{\epsilon}{t}e^{ht}$.

Geodesic flows without conjugate points 0000000

Conclusion of the proof and review of tools

 $C(t) = \{\text{per. orbits with per. in } (t - \epsilon, t]\}$ $\#C(T) = \{\text{per. orbits with per.} \le T\}$

$$\#C(t) pprox rac{\epsilon}{t} e^{ht}$$

Step 6. Divide (1, T] into ϵ -intervals $(t_k - \epsilon, t_k]$:

$$\#P(T)\approx \sum_{k}\#C(t_{k})\approx \sum_{k}\epsilon\frac{e^{ht_{k}}}{t_{k}}\xrightarrow{\epsilon\to 0}\int_{1}^{T}\frac{1}{t}e^{ht}\,dt\approx \frac{e^{hT}}{hT}$$

What did we use?

- The flow has a local product structure
- There are leaf measures m^s, m^u that scale by $e^{\pm ht}$
- $m = m^s \times m^u \times \text{Leb}$ is mixing and is the unique MME
- Periodic orbits are ϵ -separated

Geodesic flows without conjugate points •000000

Foliations via horospheres

M a manifold without conjugate points, X universal cover

Given $v \in SX$, can define stable horosphere

$$H^{s}(v) = \lim_{r \to \infty} \partial B_{X}(c_{v}(r), r)$$

where c_v is the geodesic with $\dot{c}_v(0) = v$. Normal vector field to $H^s(v)$ gives stable foliation W^s . Reverse time for unstable W^u .

Leaves may not contract, $W^{s,u}$ may not be transverse (e.g. \mathbb{R}^2)

Nonpositive curvature: $W^{s,u}$ are continuous, get contraction and transversality on an open and dense set if M is "rank 1"

No conjugate points: $W^{s,u}$ can be discts (Ballmann, Brin, Burns "dinosaur"), no proof of contraction/transversality on any open set

How to define the flow box B? Requires product structure...

Geodesic flows without conjugate points $0 \bullet 00000$

Product structure from the boundary at infinity

Assume no conjugate points, surface with genus ≥ 2

v,w on same leaf of $W^s \ \Rightarrow \ \sup_{t>0} d(c_v(t),c_w(t)) < \infty$

Write $c_v \sim c_w$ in this case; boundary at infinity ∂X is set of equivalence classes ("set of possible futures/pasts")

Join all pasts/future: for all (ξ, η) ∈ ∂²X = (∂X)² \ diag, there is a geodesic c in X with c(-∞) = ξ and c(∞) = η

Use Busemann functions, define Hopf map

$$\begin{array}{l} \mathsf{H} \colon \mathsf{SX} \to \partial^2 X \times \mathbb{R} \\ \mathsf{v} \mapsto \big(\mathsf{c}_{\mathsf{v}}(\pm \infty), \mathsf{b}_{\mathsf{c}_{\mathsf{v}}(-\infty)}(\pi \mathsf{v}, \mathsf{p}) \big) \end{array}$$

 $b_{\xi}(q,p) = \pm \mathsf{length}$

A flow-invariant μ on SM gives measure $\overline{\mu}$ on $\partial^2 X$ that is invariant under action of $\Gamma = \pi_1(M)$, and vice versa (pull back by H)

Constructing conformal measures: a rough idea

MME/Gibbs: "every orbit segment of length t gets weight e^{-ht} ."

Of course this is nonsense: uncountable! Options to resolve:

- **1** Use periodic orbits or (t, ϵ) -separated sets (Bowen)
- Use isometric action of Γ = π₁(M) on X (Patterson-Sullivan) Geodesic segment corresponds to pair of points in X

Now with a countable set, can sum:

•
$$\sum_{c \in \{\text{periodic orbits}\}} e^{-h \cdot \text{length}(c)} \text{Leb}_{c}$$

• $\sum_{\gamma \in \Gamma} e^{-hd(x, \gamma x)} \delta_{\gamma x}$ for $x \in X$

But these are infinite! Two options:

- Finite part of sum, normalize, limit
- Peplace h with s > h, normalize, take s ∖ h

Geodesic flows without conjugate points 0000000

Patterson–Sullivan construction and Margulis measure

Fix reference point $x \in X$. For each $p \in X$ get conformal density

$$\nu_{p} = \lim_{s \searrow h} \left[\operatorname{normalize} \left(\sum_{\gamma \in \Gamma} e^{-sd(p,\gamma x)} \delta_{\gamma x} \right) \right] \qquad (\operatorname{supp} \nu_{p} = \partial X)$$

Can construct a Γ -invariant probability measure $\bar{\mu}$ on $\partial^2 X$ (a geodesic current) by

$$d\bar{\mu}(\xi,\eta) = e^{h\beta_p(\xi,\eta)} \, d\nu_p(\xi) \, d\nu_p(\eta)$$

Use Hopf map to pull back to a flow-invariant measure on SM, which maximizes entropy.

Scaling properties of ν_p w.r.t. p lead to Margulis relations

Prior results using Patterson–Sullivan approach

Negative curvature. Kaimanovich (1990) showed that the construction due to Patterson and Sullivan (1970s) can be used to obtain Bowen–Margulis measure.

Roblin (2003) used this approach to get Margulis estimates for closed geodesics (applies to some noncompact manifolds)

Nonpositive curvature, rank 1. Knieper (1997–98) got unique MME via Patterson–Sullivan. His proof gives uniform counting estimates for closed geodesics (level 2 of the 3-level hierarchy)

Babillot (2002) showed that the unique MME is mixing

Ricks (2019) proved Margulis counting estimates (in CAT(0))

Defines flow box using Hopf map: B = H⁻¹(P × F × [0, ε]) where P, F are disjoint neighborhoods in ∂X

New challenges for manifolds with no conjugate points

No conjugate points. Desired ingredients:

- Periodic orbits are ϵ -separated (Count free homotopy classes)
- Product structure for flow (Provided by ∂X and Hopf map)
- Leaf measures m^s , m^u that scale by $e^{\pm ht}$ (Patterson–Sullivan)
- $m = m^s \times m^u \times \text{Leb}$ is mixing and is the unique MME (???)

Still get MME, but no proof of ergodicity/uniqueness/mixing

The Adler–Weiss–Bowen proof of uniqueness relies on ergodicity and the Gibbs property. Where to get ergodicity?

Theorem (C.–Knieper–War 2021, Adv. Math.)

For surfaces of genus ≥ 2 without conjugate points, a "coarse specification" argument establishes uniqueness of the MME.

With this in hand, Margulis argument (via Ricks) goes through.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Getting uniqueness...

Theorem (C.–Knieper–War 2021, Adv. Math.)

For surfaces of genus ≥ 2 without conjugate points, a "coarse specification" argument establishes uniqueness of the MME.

Khadim will tell you about this on Wednesday...

Highlights:

- Background metric of negative curvature
- Morse lemma relates geodesics in the two metrics
- Get a "coarse specification" property
- Pass to a finite cover to apply a general Bowen-style result: "specification + weak expansivity implies unique MME" (C.-Thompson)