Counting closed geodesics on surfaces without conjugate points

Vaughn Climenhaga

University of Houston
September 20, 2021

Joint work with Gerhard Knieper (Bochum) and Khadim War (IMPA)

Exponential growth rates for closed geodesics

$M=$ closed connected Riemannian manifold
$G(t)=\{$ closed geodesics on M with length $\leq t\}$
What can we say about $\# G(t)$ as $t \rightarrow \infty$?
Three levels of results in negative curvature:

First:

$$
\frac{1}{t} \log \# G(t) \rightarrow h>0
$$

$\# G(t)=c(t) e^{h t}$
$c(t)$ is subexponential

Second: $\frac{A}{t} e^{h t} \leq \# G(t) \leq \frac{B}{t} e^{h t}$
$t c(t)$ bounded away from 0 and ∞

Third:
Margulis
$\# G(t) \sim \frac{e^{h t}}{h t}($ ratio of sides $\rightarrow 1)$

$$
t c(t) \rightarrow \frac{1}{h}
$$

(True in any dimension. New results later are two-dimensional.)

Main result: same estimates for "no conjugate points"
$M=$ closed connected surface with genus ≥ 2
$G(t)=\{$ closed geodesics on M with length $\leq t\}$
Negative curvature (Margulis 1970): $\# G(t) \sim \frac{e^{h t}}{h t}$

- $f(t) \sim g(t)$ means $\frac{f(t)}{g(t)} \rightarrow 1$ as $t \rightarrow \infty$

negative curvature
nonpositive curvature
no conjugate points (any two points in universal cover joined by unique geodesic)

In general, can have continuum of closed geodesics (flat cylinder), so let $P(t)=\{$ free homotopy classes in $G(t)\}$

Theorem (C., Knieper, War, to appear in Comm. Contemp. Math.) No conjugate points $\Rightarrow \# P(t) \sim \frac{e^{h t}}{h t} \quad$ (dim 2, some higher-dim)

From geometry to dynamics; geodesic flow and curvature
$\phi^{t}: S M \rightarrow S M$ geodesic flow on unit tangent bundle
$v \in S M \rightsquigarrow c_{v}$ geodesic with $\dot{c}_{v}(0)=v \rightsquigarrow \phi^{t}(v):=\dot{c}_{v}(t)$
Closed geodesics \leftrightarrow periodic orbits for geodesic flow

$K>0$

$K=0$

$K<0$

Constant negative curvature and scaling of leaf measures

Constant negative curvature: universal cover is hyperbolic plane $\mathbb{H}=\{x+i y: y>0\}$ with Riemannian metric proportional to $\frac{\text { Euc }}{y}$ Normal vector fields to horocycles are uniformly contracted by $\phi^{ \pm t}$, giving an Anosov splitting $T S \mathbb{H}=E^{u} \oplus E^{s} \oplus E^{0}$ (flow direction)

Let m^{s}, m^{u} be Lebesgue measure along stable/unstable leaves, then

$$
m^{u}\left(\phi^{t} A\right)=e^{h t} m^{u}(A) \quad \text { and } \quad m^{s}\left(\phi^{t} A\right)=e^{-h t} m^{s}(A)
$$

The product $m^{u} \times m^{s} \times$ Leb gives Liouville measure on $S M$.

Margulis leaf measures

Variable negative curvature still gives a topologically mixing Anosov flow, but Lebesgue measure may not scale by

$$
m^{u}\left(\phi^{t} A\right)=e^{h t} m^{u}(A) \quad \text { and } \quad m^{s}\left(\phi^{t} A\right)=e^{-h t} m^{s}(A)
$$

For any Anosov flow, Margulis built m^{u}, m^{s} satisfying (\star), where now h is topological entropy (growth rate of (t, ϵ)-separated set)

- Fixed point argument on an appropriate space (Margulis 1970)
- Can also use Hausdorff measure in appropriate metric (Hamenstädt 1989, Hasselblatt 1989, ETDS)
- Interpretation via Bowen's alternate definition of entropy (C.-Pesin-Zelerowicz BAMS 2019, also C. arXiv:2009.09260)
- For geodesic flow can also use Patterson-Sullivan approach $m=m^{u} \times m^{s} \times$ Leb is flow-invariant Bowen-Margulis measure

Properties of Bowen-Margulis measure

$$
m^{u}\left(\phi^{t} A\right)=e^{h t} m^{u}(A) \quad \text { and } \quad m^{s}\left(\phi^{t} A\right)=e^{-h t} m^{s}(A)
$$

For a topologically mixing Anosov flow, the Bowen-Margulis measure $m=m^{u} \times m^{s} \times$ Leb has the following properties.

- Mixing (can use Hopf argument and product structure)
- Unique measure of maximal entropy (Adler, Weiss, Bowen)
- Equidistribution: given $\epsilon>0$, let

$$
\begin{aligned}
C(t) & =\{\text { periodic orbits with period in }(t-\epsilon, t]\} \\
\nu_{t} & =\frac{1}{\# C(t)} \sum_{c \in C(t)} \frac{1}{t} \text { Leb }_{c}
\end{aligned}
$$

Periodic orbit measures $\nu_{t} \xrightarrow{\text { weak }^{*}} m$ as $t \rightarrow \infty$ (Equidistribution follows from uniqueness if periodic orbits are separated and $\left.\lim _{t \rightarrow \infty} \frac{1}{t} \log \# C(t)=h\right)$

Three levels of counting estimates

$P(t)=\{$ per. orbits : per. $\leq t\} \quad N(t)=\max \#((t, \epsilon)$-sep. set $)$

Growth rate: $h=\lim _{t \rightarrow \infty} \frac{1}{t} \log N(t)=\lim _{t \rightarrow \infty} \frac{1}{t} \log \# P(t)$
closing lemma

Uniform counting estimates:
(crucial for uniqueness)
(Fekete: $\left.a_{k+n} \leq a_{k}+a_{n} \quad \Rightarrow \quad \frac{a_{n}}{n} \rightarrow \inf \frac{a_{n}}{n}=: h \quad \Rightarrow \quad a_{n} \geq n h\right)$
$N(s+t)=C^{ \pm 1} N(s) N(t)$ ("quasi-sub/supermultiplicative") gives

$$
A e^{h t} \leq N(t) \leq B e^{h t} \quad \Rightarrow \quad \frac{A^{\prime}}{t} e^{h t} \leq \# P(t) \leq \frac{B^{\prime}}{t} e^{h t}
$$

Margulis estimates: $\# P(t) \sim \frac{e^{h t}}{h t}$, ie., $A^{\prime}, B^{\prime} \rightarrow \frac{1}{h}$ as $t \rightarrow \infty$

Sketch of (modified) proof of Margulis estimates

Eventual goal: Estimate the cardinality of

$$
C(t)=\{\text { periodic orbits with period in }(t-\epsilon, t]\}
$$

and sum to get cardinality of $P(t)$ (becomes integral as $\epsilon \rightarrow 0$). Use periodic orbit measures ν_{t} and Bowen-Margulis measure m.

Step 1. Use local product structure to define flow box B with depth ϵ (in flow direction) and slice/slab S with depth ϵ^{2}

We will study the quantity

$$
\begin{aligned}
\nu_{t}(B) & =\frac{1}{t \# C(t)} \sum_{c \in C(t)} \operatorname{Leb}_{c}(B) \\
& =\frac{\epsilon}{t \# C(t)} \sum_{c \in C(t)}(\text { number of times } c \text { crosses } B)
\end{aligned}
$$

Closing lemma and components of intersection $\left(\nu_{t}\right)$

Goal: Estimate $\# C(t)=\#\{$ per. orbits with period in $(t-\epsilon, t]\}$ via $\nu_{t}(B)=\frac{\epsilon}{t \# C(t)} \sum_{c \in C(t)}$ (number of times c crosses B)

$\stackrel{\text { closing lemma }}{\leftarrow}$

Step 2. Let $\Gamma(t)=\left\{\right.$ connected components of $\left.S \cap \phi^{-t} B\right\}$. The closing lemma gives a correspondence between $\Gamma(t)$ and the orbit segments in which an element of c crosses B. Thus

$$
\nu_{t}(B) \approx \frac{\epsilon}{t} \frac{\# \Gamma(t)}{\# C(t)}
$$

Scaling of leaf measures, and mixing property (m)

$C(t)=\{$ per. orbits with per. in $(t-\epsilon, t]\}$ $\Gamma(t)=\left\{\right.$ conn. comp. of $\left.S \cap \phi^{-t} B\right\}$

$$
\nu_{t}(B) \approx \frac{\epsilon}{t} \frac{\# \Gamma(t)}{\# C(t)}
$$

Now we estimate $m\left(S \cap \phi^{-t} B\right)$ in two different ways...
Step 3. $m=m^{u} \times m^{s} \times$ Leb and $m^{u, s}$ scale by $e^{h t}$, so nearly every component A in $\Gamma(t)$ has $m(A)=e^{-h t} m(S)$, giving

$$
m\left(S \cap \phi^{-t} B\right) \approx \# \Gamma(t) e^{-h t} m(S)
$$

Step 4. m is mixing, so $m\left(S \cap \phi^{-t} B\right) \rightarrow m(S) m(B)$, giving

$$
m(S) m(B) \approx \# \Gamma(t) e^{-h t} m(S) \Rightarrow m(B) \approx e^{-h t} \# \Gamma(t)
$$

Equidistribution (both ν_{t} and m)

$$
\begin{aligned}
& C(t)=\{\text { per. orbits with per. in }(t-\epsilon, t]\} \quad \nu_{t}(B) \approx \frac{\epsilon}{t} \frac{\# \Gamma(t)}{\# C(t)} \\
& \Gamma(t)=\left\{\text { conn. comp. of } S \cap \phi^{-t} B\right\} \\
& \quad m(B) \approx e^{-h t} \# \Gamma(t) \Rightarrow \quad \# \Gamma(t) \approx m(B) e^{h t}
\end{aligned}
$$

Preliminary estimate of $\# C(t)$ by combining the above:

$$
\begin{equation*}
\# C(t) \approx \frac{\epsilon}{t} \# \Gamma(t) \frac{\epsilon}{\nu_{t}(B)} \approx \frac{m(B)}{t} \frac{h t}{\nu_{t}(B)} e^{h t} \Rightarrow \lim _{t \rightarrow \infty} \frac{1}{t} \log \# C(t)=h \tag{1}
\end{equation*}
$$

Step 5. General argument as in proof of variational principle uses this estimate to show that every limit point of $\left(\nu_{t}\right)_{t \rightarrow \infty}$ is an MME, and uniqueness gives equidistribution result $\nu_{t} \rightarrow m$. Then the first part of (1) gives $\# C(t) \approx \frac{\epsilon}{t} e^{h t}$.

Conclusion of the proof and review of tools

$C(t)=\{$ per. orbits with per. in $(t-\epsilon, t]\}$
$P(T)=\{$ per. orbits with per. $\leq T\}$

$$
\# C(t) \approx \frac{\epsilon}{t} e^{h t}
$$

Step 6. Divide ($1, T$] into ϵ-intervals ($t_{k}-\epsilon, t_{k}$]:

$$
\# P(T) \approx \sum_{k} \# C\left(t_{k}\right) \approx \sum_{k} \epsilon \frac{e^{h t_{k}}}{t_{k}} \xrightarrow{\epsilon \rightarrow 0} \int_{1}^{T} \frac{1}{t} e^{h t} d t \approx \frac{e^{h T}}{h T}
$$

What did we use?

- The flow has a local product structure
- There are leaf measures m^{s}, m^{u} that scale by $e^{ \pm h t}$
- $m=m^{s} \times m^{u} \times$ Leb is mixing and is the unique MME
- Periodic orbits are ϵ-separated

Foliations via horospheres

M a manifold without conjugate points, X universal cover
Given $v \in S X$, can define stable horosphere

$$
H^{s}(v)=\lim _{r \rightarrow \infty} \partial B_{X}\left(c_{v}(r), r\right)
$$

where c_{v} is the geodesic with $\dot{c}_{v}(0)=v$. Normal vector field to $H^{s}(v)$ gives stable foliation W^{s}. Reverse time for unstable W^{u}.

Leaves may not contract, $W^{s, u}$ may not be transverse (e.g. \mathbb{R}^{2})
Nonpositive curvature: $W^{s, u}$ are continuous, get contraction and transversality on an open and dense set if M is "rank 1"
No conjugate points: $W^{s, u}$ can be discts (Ballmann, Brin, Burns "dinosaur"), no proof of contraction/transversality on any open set How to define the flow box B ? Requires product structure. . .

Product structure from the boundary at infinity

Assume no conjugate points, surface with genus ≥ 2
v, w on same leaf of $W^{s} \Rightarrow \sup _{t>0} d\left(c_{v}(t), c_{w}(t)\right)<\infty$
Write $c_{v} \sim c_{w}$ in this case; boundary at infinity ∂X is set of equivalence classes ("set of possible futures/pasts")

- Join all pasts/future: for all $(\xi, \eta) \in \partial^{2} X=(\partial X)^{2} \backslash$ diag, there is a geodesic c in X with $c(-\infty)=\xi$ and $c(\infty)=\eta$

Use Busemann functions, define Hopf map

$$
\begin{aligned}
H: S X & \rightarrow \partial^{2} X \times \mathbb{R} \\
v & \mapsto\left(c_{v}(\pm \infty), b_{c_{v}(-\infty)}(\pi v, p)\right)
\end{aligned}
$$

$$
b_{\xi}(q, p)= \pm \text { length }
$$

A flow-invariant μ on SM gives measure $\bar{\mu}$ on $\partial^{2} X$ that is invariant under action of $\Gamma=\pi_{1}(M)$, and vice versa (pull back by H)

Constructing conformal measures: a rough idea

MME/Gibbs: "every orbit segment of length t gets weight $e^{-h t}$."
Of course this is nonsense: uncountable! Options to resolve:
(1) Use periodic orbits or (t, ϵ)-separated sets (Bowen)
(2) Use isometric action of $\Gamma=\pi_{1}(M)$ on X (Patterson-Sullivan) Geodesic segment corresponds to pair of points in X

Now with a countable set, can sum:
(1) $\sum_{c \in\{\text { periodic orbits }\}} e^{-h \cdot \text { length }(c)}$ Leb $_{c}$
(2) $\sum_{\gamma \in \Gamma} e^{-h d(x, \gamma x)} \delta_{\gamma x}$ for $x \in X$

But these are infinite! Two options:
(1) Finite part of sum, normalize, limit
(2) Replace h with $s>h$, normalize, take $s \searrow h$

Patterson-Sullivan construction and Margulis measure

Fix reference point $x \in X$. For each $p \in X$ get conformal density

$$
\nu_{p}=\lim _{s \searrow h}\left[\operatorname{normalize}\left(\sum_{\gamma \in \Gamma} e^{-s d(p, \gamma x)} \delta_{\gamma x}\right)\right] \quad\left(\operatorname{supp} \nu_{p}=\partial X\right)
$$

Can construct a 「-invariant probability measure $\bar{\mu}$ on $\partial^{2} X$ (a geodesic current) by

$$
d \bar{\mu}(\xi, \eta)=e^{h \beta_{p}(\xi, \eta)} d \nu_{p}(\xi) d \nu_{p}(\eta)
$$

Use Hopf map to pull back to a flow-invariant measure on SM, which maximizes entropy.

Scaling properties of ν_{p} w.r.t. p lead to Margulis relations

Prior results using Patterson-Sullivan approach

Negative curvature. Kaimanovich (1990) showed that the construction due to Patterson and Sullivan (1970s) can be used to obtain Bowen-Margulis measure.

Roblin (2003) used this approach to get Margulis estimates for closed geodesics (applies to some noncompact manifolds)

Nonpositive curvature, rank 1. Knieper (1997-98) got unique MME via Patterson-Sullivan. His proof gives uniform counting estimates for closed geodesics (level 2 of the 3-level hierarchy)

Babillot (2002) showed that the unique MME is mixing
Ricks (2019) proved Margulis counting estimates (in CAT(0))

- Defines flow box using Hopf map: $B=H^{-1}(\mathbf{P} \times \mathbf{F} \times[0, \epsilon])$ where \mathbf{P}, \mathbf{F} are disjoint neighborhoods in ∂X

New challenges for manifolds with no conjugate points

No conjugate points. Desired ingredients:

- Periodic orbits are ϵ-separated (Count free homotopy classes)
- Product structure for flow (Provided by ∂X and Hopf map)
- Leaf measures m^{s}, m^{u} that scale by $e^{ \pm h t}$ (Patterson-Sullivan)
- $m=m^{s} \times m^{u} \times$ Leb is mixing and is the unique MME (???)

Still get MME, but no proof of ergodicity/uniqueness/mixing
The Adler-Weiss-Bowen proof of uniqueness relies on ergodicity and the Gibbs property. Where to get ergodicity?

Theorem (C.-Knieper-War 2021, Adv. Math.)

For surfaces of genus ≥ 2 without conjugate points, a "coarse specification" argument establishes uniqueness of the MME.

With this in hand, Margulis argument (via Ricks) goes through.

Getting uniqueness. . .

Theorem (C.-Knieper-War 2021, Adv. Math.)
 For surfaces of genus ≥ 2 without conjugate points, a "coarse specification" argument establishes uniqueness of the MME.

Khadim will tell you about this on Wednesday...
Highlights:

- Background metric of negative curvature
- Morse lemma relates geodesics in the two metrics
- Get a "coarse specification" property
- Pass to a finite cover to apply a general Bowen-style result: "specification + weak expansivity implies unique MME" (C.-Thompson)

