Nonpositive curvature

Classical approaches...

...in nonpositive curvature

Unique equilibrium states for geodesic flows in nonpositive curvature

Vaughn Climenhaga University of Houston

August 4, 2017

Joint work with Keith Burns, Todd Fisher, and Daniel J. Thompson

Negative	

Nonpositive curvature

Classical approaches...

... in nonpositive curvature 0000000000

Overview of talk

Goal: study uniqueness of equilibrium states for geodesic flows

Known results:

 $\label{eq:curvature} \begin{array}{l} {\rm Curvature} < {\rm 0:} \mbox{ unif hyperbolic,} \\ {\rm unique \ eq \ state} \ \forall \ {\rm H\"older} \ \varphi \end{array}$

 \leq 0: non-unif hyp, unique MME

New results: (Burns-C.-Fisher-Thompson, arXiv:1703.10878)

Curvature \leq 0:

- Unique equilibrium state if $P(\text{Sing}, \varphi) < P(\varphi)$
- Pressure gap condition is optimal and common

Negative curvatureNonposit•0000000

Nonpositive curvature

Classical approaches...

... in nonpositive curvature

Thermodynamic formalism in uniform hyperbolicity

Motivation: Anosov systems have many invariant measures

Let M be a compact manifold, $f_t \colon M \to M$ a C^{1+lpha} Anosov flow

- \exists inv. splitting $T_X M = E_x^u \oplus E_x^s \oplus E_x^0$ with $\frac{d}{dt} f_t(x) \in E_x^0$ and $C, \lambda > 0$ such that $\|Df_t|_{E_x^s}\|, \|Df_{-t}|_{E_x^v}\| \leq Ce^{-\lambda t}$ for all $t \geq 0$
- The distributions E^{u,s,0} are Hölder continuous and integrate to foliations W^{u,s,0} with local product structure

Study statistical behaviour: Fix an invariant measure and study ergodic theory of measure-preserving flow (M, f_t, μ)

 f_t Anosov $\Rightarrow M_f = \{$ flow-inv. Borel probability measures on $M \}$ is enormous, so we must identify 'distinguished' measures

- Measure of maximal entropy (MME) maximum complexity
- Sinai-Ruelle-Bowen (SRB) measure physically relevant

Negative curvature ○●○○ Nonpositive curvature

Classical approaches...

... in nonpositive curvature

Thermodynamic formalism in uniform hyperbolicity

Goal: study uniqueness of equilibrium states

Equilibrium state (ES) for $\varphi \colon M \to \mathbb{R}$ achieves $\sup_{\mu} (h_{\mu}(f_1) + \int \varphi \, d\mu) =: P(\varphi)$ • $\varphi(x) = 0 \rightsquigarrow \mathsf{MME}$

• $\varphi^{\text{geo}}(x) = -\log |\det Df|_{E_x^u}| \rightsquigarrow \mathsf{SRB}$

Existence? Uniqueness? Ergodic properties?

- Existence free if $\mu\mapsto h_\mu(f)$ upper semicts
- We focus on uniqueness

Theorem (Sinai, Ruelle, Bowen 1970s)

Topologically mixing Anosov system \Rightarrow every Hölder $\varphi \colon M \to \mathbb{R}$ has a unique ES μ_{φ} . For diffeos, μ_{φ} is Bernoulli, has EDC + CLT.

Statistical properties for flows a little more subtle...

 Negative curvature
 Nonpositive curvature
 Classical approaches...
 ... in nonpositive curvature

 ∞●●
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞
 ∞∞

Example: Geodesic flow, dynamics controlled by curvature

Let M be a smooth compact Riemannian manifold

- $v \in T^1M \rightsquigarrow$ unique unit speed geodesic $\gamma_v(t)$ with $\dot{\gamma}_v(0) = v$
- Geodesic flow $f_t: T^1M \to T^1M$ takes $v \mapsto \dot{\gamma}_v(t)$

Preserves smooth Liouville measure: (M-vol $) \times (S^{d-1}$ -vol)

dim 2: Given $v \approx w$, let $\rho(t) =$ distance between $\gamma_v(t)$, $\gamma_w(t)$, and $\kappa(t) =$ Gaussian curvature at $\gamma_v(t)$; then $\ddot{\rho} \approx -\kappa \rho$ (Jacobi fields)

Positive curvature concave

Zero curvature linear

Negative curvature convex Negative curvature
0000Nonpositive curvature
0000Classical approaches...
0000... in nonpositive curvature
0000Geodesic flow in negative curvature:Negative curvature:hyperbolicity via $\partial \tilde{M}$, horospheres

If M has negative curvature, then the geodesic flow $f_t: T^1M \rightarrow T^1M$ is topologically mixing and Anosov. Every Hölder potential has a unique equilibrium state (+ Bernoulli, EDC, CLT).

 $\partial \tilde{M}$

 H^s_{a}

1. Go to universal cover $ilde{M}$

2. Get $E^{s,u}$, $W^{s,u}$ from horospheres

Nonpositive curvature •000 Classical approaches...

... in nonpositive curvature

Nonpositive curvature: two important examples

Now suppose M has nonpositive curvature; some sectional curvatures may vanish, but can never be positive.

Example 1: take surface of negative curvature, flatten near a periodic orbit

[Picture: Ballmann, Brin, Eberlein]

Dim > 2: Other possibilities

Gromov's example: 3-dim

Some sectional curvature = 0 at every point

No neg. curved metric

Nonpositive curvature

Classical approaches... 0000 ... in nonpositive curvature

Partition into singular (non-hyp) and regular (hyp) parts

Still have universal cover, horospheres, $E^{s,u}$, ... but now M can have singular geodesics with the following (equivalent) properties:

- **1** non-trivial parallel Jacobi field
- e Horospheres have higher-order tangency
- $E^{s,u}$ no longer transverse

 $\mathsf{Sing} = \{ v \in T^1 M : \gamma_v \text{ is singular} \} \qquad \mathsf{Reg} = T^1 M \setminus \mathsf{Sing}$

 $\mu \in \mathcal{M}_f$ is hyperbolic (all Lyapunov exp. eq 0) iff $\mu(\mathsf{Reg}) = 1$

M is rank 1 if $\text{Reg} \neq \emptyset$; then Reg is open, dense, and invariant

- Example 1: Sing is a union of (possibly degenerate) flat strips
- Gromov's example: central strip + all orbits staying in one half

Unique MME and entropy gap in nonpositive curvature

Geodesic flow in nonpositive curvature is entropy-expansive, so every continuous φ has at least one ES. What about uniqueness?

Theorem (Knieper 1998)

If M has rank 1, then it has a unique MME μ . The MME μ is fully supported and is the limiting distribution of periodic orbits.

Guarantees entropy gap $h_{top}(Sing) < h_{top}(T^1M)$.

• Automatic in dim 2. In higher dimensions gap can be small; modify Gromov's example to have arbitrarily long 'neck'

Theorem (Babillot 2002; Ledrappier, Lima, Sarig 2016)

The Knieper measure is mixing; if dim M = 2 then it is Bernoulli.

Open question: What about decay of correlations?

Classical approaches... 0000 ... in nonpositive curvature 0000000000

(*)

New results: unique equilibrium states and pressure gap

Theorem (Burns, C., Fisher, Thompson 2017)

Let M be rank 1, and $\varphi \colon T^1M \to \mathbb{R}$ be Hölder or $q\varphi^{\text{geo}}$ $(q \in \mathbb{R})$.

- If $P(Sing, \varphi) < P(\varphi)$, then φ has a unique eq. state; it is fully supported and the limit distribution of φ -weighted per. orbits.
- **②** The pressure gap holds for the following classes of potentials.
 - Any dim: φ is (almost) locally constant on nbhd of Sing
 → dim M = 2, analytic metric: generic φ (C⁰-open, C⁰-dense)
 - dim M = 2 and $\varphi = q\varphi^{\text{geo}}$ for any $q \in (-\infty, 1)$

Moreover, the unique ES in the theorem is mixing (in preparation) Gap necessary: if $P(\text{Sing}, \varphi) = P(\varphi)$, \exists singular ES $(-\infty, 1)$ optimal in (*): \exists singular ES $\forall q \ge 1$

Approach I: Markov partitions, Banach spaces, eigendata

- Get ES via eigendata of linear operator -

Anosov diffeos \rightsquigarrow subshifts of finite type via Markov partitions (Sinai 1968, Bowen 1972)

Unique MME: Parry measure via eigendata of transition matrix

SFT + Hölder $\varphi \rightsquigarrow$ quasi-compact transfer operator on $C^{\alpha}(\Sigma^+)$ (Ruelle's Perron–Frobenius theorem, 1968)

Unique ES described by eigendata of transfer operator

Anosov flow \rightsquigarrow suspension flow over SFT

- Gets unique ES for Hölder φ + strongest statistical properties
- Exponential decay of correlations for geodesic flows in negative curvature: build Banach space directly (Liverani 2004)

Approach II: Geometric, conditional measures on $W^{s,u}_x$, ∂M

- Get ES via conditional measures with appropriate scaling -
- Anosov flows: Margulis measure (1970) is the unique MME
 - **1** Build measures μ_x^u on W_x^u such that $\mu_{f_{tx}}^u = e^{h_{top}(f_t)} (Df_t)_* \mu_x^u$
 - ² Similarly on W_x^s , then take (local) product of μ_x^u , μ_x^s , Leb
- μ is K (uses product structure), controls growth of periodic orbits

Negative curvature: {geodesics on \tilde{M} } $\leftrightarrow (\partial \tilde{M})^2 \setminus diagonal$

- \exists Patterson–Sullivan $\nu \in \mathcal{M}(\partial \tilde{M})$ s.t. MME $\leftrightarrow \nu \times \nu$
- $W^{u,s}_{x} \leftrightarrow$ horospheres $\leftrightarrow \partial \tilde{M}$ gives $\mu^{u,s}_{x} \leftrightarrow \nu$

See also Hamenstädt, Hasselblatt, Kaimanovich 1989/90

Eq. states with $\varphi \neq 0$: see Paulin, Pollicott, Schapira (2015)

C.–Pesin–Zelerowicz (in progress): build conditional measures $\mu_{\varphi,x}^u$ using Pesin–Pitskel' generalization of Bowen's 'noncpt entropy'

Nonpositive curvature

Classical approaches...

... in nonpositive curvature

Approach III: Specification property

- Get ES with bare hands via proof of variational principle -

$$P(\varphi) = \lim_{\varepsilon \to 0} \overline{\lim_{T \to \infty}} \frac{1}{T} \log \sup_{\substack{E \subset X \\ (T,\varepsilon) \text{-sep}}} \sum_{x \in E} e^{\int_0^T \varphi(f_t x) \, dt}$$

Theorem (Bowen 1972, 1974)

If $\{f_t\}$ is an Anosov flow and μ_T is equidistributed on periodic orbits of length $\leq T$, then $\mu_T \rightarrow$ unique MME as $T \rightarrow \infty$.

Uses **specification property**: \forall shadowing scale $\varepsilon > 0 \exists$ gap size $\tau > 0$ s.t. \forall list of orbit segments $\{(x_i, t_i)\}_{i=1}^k \subset X \times [0, \infty)$ $\exists \varepsilon$ -shadowing τ -connecting orbit: $y \in X$, $\tau_i \in [0, \tau]$ s.t. for $T_j = \sum_{i=0}^{j-1} t_i + \tau_i$ we get $f_{T_j}(y) \in B_{T_j}(x_j, \varepsilon) \ \forall 1 \le j \le k$.

 $B_t(x,\varepsilon)$ denotes the Bowen ball $\{y: d(f_sy, f_sx) < \varepsilon \ \forall 0 \le s \le t\}$

Nonpositive curvature

Classical approaches... 000● ... in nonpositive curvature

Expansivity + specification + regularity \Rightarrow uniqueness

Anosov flows are expansive: $\exists \varepsilon > 0$ s.t. "bi-infinite Bowen ball" $\Gamma_{\varepsilon}(x) = \{y : d(f_t y, f_t x) \le \varepsilon \ \forall t \in \mathbb{R}\}$ contained in orbit of x.

Every Hölder potential φ for an Anosov flow has Bowen property: $\sup_{x,T} \sup_{y \in B_T(x,\varepsilon)} \left| \int_0^T \varphi(f_t x) dt - \int_0^T \varphi(f_t y) dt \right| < \infty$

Theorem (Bowen 1974/75, Franco 1977)

Let f_t be an expansive flow on a compact metric space with the specification property. Then every φ with the Bowen property has a unique equilibrium state μ_{φ} . Also, μ_{φ} has Gibbs property:

$$\exists Q > 0 \text{ s.t.} \qquad Q^{-1} \leq \frac{\mu_{\varphi}(B_T(x,\varepsilon))}{e^{-P(\varphi)T + \int_0^T \varphi(f_t x) \, dt}} \leq Q \qquad \forall x, T$$

Get ergodicity, partial mixing; for diffeos get K (Ledrappier 1977).

Nonpositive curvature

Classical approaches...

Approach I: Markov partitions and Banach spaces

Countable Markov partitions \Rightarrow Bernoulli. Uniqueness?

Theorem (Ledrappier, Lima, Sarig 2016)

If dim M = 2, curvature ≤ 0 , $\varphi \colon T^1M \to \mathbb{R}$ is Hölder or $q\varphi^{\text{geo}}$, and μ is an eq. state for φ such that $\mu(\text{Reg}) = 1$, then μ is Bernoulli.

Code as suspension over ctbl-state Markov shift (Lima, Sarig '17)

- Existence and uniqueness require extra information on the shift (Gurevich, Sarig), not available from Lima–Sarig result (but see Buzzi–Crovisier–Sarig for diffeos)
- Decay of correlations requires even stronger recurrence information (i.e. estimate on tail of Young tower)

For geodesic flows in nonpositive curvature, symbolic/Banach space approach does not (so far) say anything about existence, uniqueness, or correlation decay.

Nonpositive curvature

Classical approaches...

...in nonpositive curvature

Approach II: Geometric, conditional measures, $\partial \tilde{M}$

Unique MME from Patterson–Sullivan measure

The first uniqueness result in nonpositive curvature was. . .

Theorem (Knieper 1998)

There is a Patterson–Sullivan measure ν on the ideal boundary $\partial \tilde{M}$ s.t. the corresponding measure μ on T^1M is the unique MME. Then μ is fully supported and the limit distribution of per. orbits. As a corollary, there is an entropy gap: $h_{top}(Sing) < h_{top}(T^1M)$

Theorem (Babillot 2002)

The product structure of μ leads to the mixing property.

For geodesic flows in nonpositive curvature, geometric Patterson– Sullivan–Knieper approach gives a unique MME but does not (yet) say anything about equilibrium states for $\varphi \neq 0$. Nonpositive curvature

Classical approaches... 0000 Approach III: Non-uniform specification

Decompositions of the space of orbit segments

 f_t a flow on a compact metric space X. A subset $\mathcal{G} \subset X \times [0, \infty)$ represents a collection of finite-length orbit segments.

 \mathcal{G} has specification if $\forall \varepsilon > 0 \ \exists \tau$ s.t. every list of orbit segments $\{(x_i, t_i)\}_{i=1}^k \subset \mathcal{G}$ has an ε -shadowing τ -connecting orbit.

Same idea as before, but only needed for **good** orbit segments

Decomposition: $\mathcal{P}, \mathcal{G}, \mathcal{S} \subset X \times [0, \infty)$ and functions $p, g, s \colon X \times [0, \infty) \to [0, \infty)$ s.t. (p + g + s)(x, t) = t and $(x, p) \in \mathcal{P}, (f_p x, g) \in \mathcal{G}, (f_{p+g} x, s) \in \mathcal{S}.$

Nonpositive curvature

Classical approaches... 0000 ...in nonpositive curvature

Approach III: Non-uniform specification

Obstructions to specification and regularity

Idea: \mathcal{P}, \mathcal{S} are "obstructions to specification"; can glue **if** we first remove pre-/suffixes from \mathcal{P}, \mathcal{S}

Need obstructions to be "small"

Pressure of obstructions to specification:

•
$$Q_n = \{x \in X : (x, t) \in \mathcal{P} \cup \mathcal{S} \text{ for some } t \in [n, n+1]\}$$

•
$$\mathbb{E}_n(\varepsilon) := \{ E \subset Q_n : \forall x \neq y \in E \text{ we have } y \notin B_n(x, \varepsilon) \}$$

•
$$\Lambda_n(\varphi,\varepsilon) := \sup\{\sum_{x \in E} e^{\int_0^n \varphi(f_t x) dt} : E \in \mathbb{E}_n(\varepsilon)\}$$

•
$$P([\mathcal{P}\cup\mathcal{S}],\varphi) = \lim_{\varepsilon\to 0} \overline{\lim}_{n\to\infty} \frac{1}{n} \log \Lambda_n(\varphi,\varepsilon)$$

Also require Bowen property for φ on \mathcal{G} (not on all orbit segments)

$$\sup_{(x,T)\in\mathcal{G}}\sup_{y\in B_{T}(x,\varepsilon)}\left|\int_{0}^{T}\varphi(f_{t}y)\,dt-\int_{0}^{T}\varphi(f_{t}x)\,dt\right|<\infty$$

 Negative curvature
 Nonpositive curvature
 Classical approaches...
 ... in nonpositive curvature

 0000
 0000
 0000
 0000
 0000

 Approach III: Non-uniform specification
 Small obstructions implies uniqueness
 0000

Pressure of obstructions to expansivity:

- $\Gamma_{\varepsilon}(x) = \{y \in X : d(f_t y, f_t x) \le \varepsilon \ \forall t \in \mathbb{R}\}$
- If flow is expansive, then $\Gamma_{\varepsilon}(x) \subset$ orbit of x for all x
- $\operatorname{NE}(\varepsilon) = \{x \in X : \Gamma_{\varepsilon}(x) \not\subset \text{ orbit of } x\}$
- $P_{\exp}^{\perp}(\varphi) = \lim_{\varepsilon \to 0} \sup\{h_{\mu}(f) + \int \varphi \, d\mu : \mu(\operatorname{NE}(\varepsilon)) = 1\}$

Theorem (C., Thompson 2016)

Suppose (X, f_t, φ) has $P_{\exp}^{\perp}(\varphi) < P(\varphi)$ and \exists decomp $\mathcal{P}, \mathcal{G}, \mathcal{S}$ s.t.

- G has specification
- **2** φ has the Bowen property on $\mathcal G$
- $P([\mathcal{P} \cup \mathcal{S}], \varphi) < P(\varphi)$

Then (X, f_t, φ) has a unique equilibrium state μ . It is ergodic and has the Gibbs property on \mathcal{G} .

 Negative curvature
 Nonpositive curvature
 Classical approaches...
 ...in nonpositive curvature

 0000
 0000
 0000
 0000●0000

 Approach III: Non-uniform specification
 0000
 0000

Decomposition for geod flow: first attempt, curvature of M

How to produce $\mathcal{P}, \mathcal{G}, \mathcal{S}$ for geodesic flow? Start with dim M = 2.

Idea: negative curvature \rightsquigarrow hyperbolicity, so "obstructions" are

$$\mathcal{P} = \mathcal{S} = \mathcal{B}(\eta) := \{(v, T) : \int_0^T |\kappa(\gamma_v(t))| \, dt < \eta T\}$$

where $\kappa(x)$ is Gaussian curvature and $\eta>0$ is a fixed parameter

Stripping away longest possible bad segments from ends leaves

 $\mathcal{G} = \{ (\mathbf{v}, T) : \int_0^t |\kappa(\gamma_{\mathbf{v}}(s))| \, ds, \int_{T-t}^T |\kappa(\gamma_{\mathbf{v}}(s))| \, ds \ge \eta t \,\,\forall t \in [0, T] \}$

- Like hyperbolic times (Alves)
- What if dim M > 2? Then curvature is a tensor.
- Gromov example never has all sectional curvatures < 0

 Negative curvature
 Nonpositive curvature
 Classical approaches...
 ... in nonpositive curvature

 0000
 0000
 0000
 0000
 0000

 Approach III: Non-uniform specification
 Decomposition: general solution, curvature of horospheres

Given $v \in T^1M$, let $H^s(v)$ be stable horosphere, $\mathcal{U}^s(v)$ its second fundamental form, and $\lambda^s(v) \ge 0$ the smallest eigenvalue of $\mathcal{U}^s(v)$. Similarly for $\lambda^u(v) \ge 0$, and then $\lambda = \min(\lambda^s, \lambda^u)$.

 λ: T¹M → [0,∞) is a lower bound for curvature of horospheres, and thus bounds contraction/expansion rates

Fix $\eta > 0$ and let $\mathcal{P} = \mathcal{S} = \mathcal{B}$ be segments with $average(\lambda) < \eta$:

$$\mathcal{B} = \{ (v, T) : \int_0^T \lambda(f_t v) \, dt < \eta T \}$$
$$\mathcal{G} = \{ (v, T) : \int_0^t \lambda(f_s v) \, ds \ge \eta t, \\ \int_{T-t}^T \lambda(f_s v) \, ds \ge \eta t \, \forall t \in [0, T] \}$$

If $\varphi \colon T^1M \to \mathbb{R}$ is continuous and locally constant on a neighbourhood of Sing, then $P(\text{Sing}, \varphi) < P(\varphi)$.

 Negative curvature
 Nonpositive curvature
 Classical approaches...
 ...in nonpositive curvature

 0000
 0000
 0000
 000000000

 Approach III: Non-uniform specification
 0000
 0000000000

Ergodic properties: Gibbs \Rightarrow product structure \Rightarrow mixing

What about mixing, K, Bernoulli, decay of correlations?

- \bullet Our result only gives ergodicity and $\mathcal G\text{-}\mathsf{Gibbs}$
- Ledrappier–Lima–Sarig gives Bernoulli if dim M = 2
- No results (yet) on decay of correlations

For Anosov systems, Gibbs measures have product structure: use Gibbs property to control Radon– Nikodym derivative of holonomy maps between local unstable leaves

Can generalize this to our setting and use Pesin theory to prove that our measures μ_{φ} have quasi-product structure given in terms of $\partial \tilde{M}$ as with Patterson–Sullivan–Knieper. Then Babillot's machinery shows that μ_{φ} is mixing in any dimension.

Negative curvature 0000	Nonpositive curvature	Classical approaches 0000	in nonpositive curvature
Further directions			
A I			

A couple open questions

In dim 2, get gap for $q\varphi^{\text{geo}}$ for all $q \in (-\infty, 1)$, since $\mu(\text{Sing}) = 1$ $\Rightarrow h_{\mu}(f_1) = \int \varphi^{\text{geo}} d\mu = 0$, so $P(\text{Sing}, q\varphi^{\text{geo}}) = 0 < P(q\varphi^{\text{geo}})$

What about higher dimensions? May have $h_{top}(Sing) > 0...$

If Sing = finite union of periodic orbits (e.g. analytic metric, dim 2) then for every Hölder $\varphi \colon T^1M \to \mathbb{R}$ there are φ_1 and φ_2 such that

 $(\varphi_1 = \frac{1}{T} \int_0^T \varphi \circ f_t dt)$

$$oldsymbol{0}~arphi$$
 are cohomologous,

- 2 φ_1 and φ_2 are C^0 -close,
- **③** φ_2 is locally constant on a nbhd of Sing.

Thus pressure gap is a C^0 -dense (and open) condition.

Does the same result hold for the Gromov example?

Negative curvature	Nonpositive curvature	Classical approaches	in nonpositive curvature
0000	0000	0000	000000000

thank you $/\mbox{ merci}$