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Plan of talk

Dynamical system

{
X a complete separable metric space

f : X → X a measurable map

Potential function ϕ : X → [−∞,∞] measurable

Classical thermodynamic formalism:

Assume X compact, f continuous, ϕ continuous

Relate two definitions of pressure: supremum, growth rate

Problem: Many interesting examples violate one or more of these

Still get some version of the variational principle, using some
aspect of the structure of the system

Goal: formulate a general statement valid for all systems
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Trailer (with spoilers!)

Theorem

Let X be a complete separable metric space, f : X → X a
measurable map, and ϕ : X → R a bounded measurable function.
Then P(ϕ) = sup{hµ(f ) +

∫
ϕ dµ | µ ∈Mf (X )}.

P(ϕ) = sup{P(D, ϕ) | D is a topologically separated

set of orbit segments satisfying (C1)}

(C1) Uniform tightness: ∀ε > 0 there is compact Zε ⊂ X s.t.

Ex ,n(X \ Zε) < ε for all large n and x ∈ Dn

f |Zε and ϕ|Zε are continuous
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Basic notation and space of orbit segments

X complete separable metric space, f : X → X measurable

ϕ : X → [−∞,∞] a measurable potential function

Many definitions given in terms of X ×N, space of orbit segments

Identify (x , n) with x → f (x)→ f 2(x)→ · · · → f n−1(x)

Given D ⊂ X × N, write Dn = {x | (x , n) ∈ D}

Examples:

Let Dn be a maximal (n, δ)-separated set, put D =
⋃

nDn

Fix I ⊂ R, put D = {(x , n) | 1
nSnϕ(x) ∈ I}

Non-uniformly expanding: D = {(x , n) | n a hyp. time for x}
NUH: Fix `, let D = {(x , n) | x , f n(x) ∈ Λ` (Pesin set)}

First D is “topologically separated”, others are not.
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A proliferation of definitions

(X , f , ϕ) as before, Mϕ
f (X ) = {Borel prob. meas. with ϕ ∈ L1(µ)}

Various ways to define topological pressure in “classical” case

1 Supremum: P(ϕ) = sup{hµ(f ) +
∫
ϕ dµ | µ ∈Mϕ

f (X )}

2 Growth rate:


Λn(D, ϕ) =

∑
x∈Dn

eSnϕ(x)

P(D, ϕ) = lim 1
n log Λn(D, ϕ)

P(ϕ) = sup / inf / lim P(D, ϕ)

Mimics packing/box dimension, coarse spectrum
(Includes definition as spectral radius of Lϕ)

3 Critical exponent:

{
mϕ(α) = infD

∑
(x ,n)∈D e−αn+Snϕ(x)

P(ϕ) = inf{α | mϕ(α) = 0}
Mimics Hausdorff dimension, fine spectrum
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Fundamental results in classical setting

Compact invariant sets, cts f and ϕ ⇒ all three notions coincide.

Extra information on system yields results on existence,
uniqueness, and statistical properties of equilibrium states.

Definition via growth rates plays key role.

Existence: for expansive systems, there is D ⊂ X × N with
P(ϕ) = P(D, ϕ). Build µ with hµ(f ) +

∫
ϕ dµ = P(D, ϕ) as

limit of combination of empirical measures Ex ,n = 1
n

∑n−1
k=0 δf kx

Uniqueness: use some structure (specification, Markov, etc.)
to show that µ is Gibbs, ergodic, unique

Statistical properties: spectral gap for RPF operator Lϕ
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Noncompactness and discontinuity

What about non-compact X and discontinuous f and ϕ?

Piecewise expanding maps (interval or otherwise): f is
discontinuous, natural potential ϕ = − log |f ′| is discontinuous

Interval maps with critical points: − log |f ′| has singularities

Lyapunov exponents for non-uniformly hyperbolic systems:
log det(Df |Eu) has same regularity as Eu

Shift spaces on a countable alphabet: X is non-compact

Geodesic flow on non-compact manifold



Introduction Motivation Classical results General setting

Definitions in general case

Growth rate definition can be made precise in various ways.
(Spanning sets, separated sets, covers.) Not clear which to use
when compactness and continuity fail.

Supremum definition is unambiguous, can be taken as definition of
pressure for any metric space X and measurable f , ϕ.

P∗(ϕ) = sup

{
hµ(f ) +

∫
ϕ dµ

∣∣∣ µ ∈Mϕ
f (X )

}

Question: Can this quantity still be interpreted as a growth rate in
the non-compact and discontinuous setting?

Remark: Same question for Mϕ−
f (X ) = {µ |

∫
ϕ dµ > −∞}.
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Topological separation

Λn(D, ϕ) =
∑

x∈Dn
eSnϕ(x)  P(D, ϕ) = lim 1

n log Λn(D, ϕ)

To get Λn(D, ϕ) <∞, require D to be “coarse”.

maximal (n, δ)-separated set

minimal (n, δ)-spanning set

fix open cover U indexed by I = {1, . . . , d}, for each w ∈ I n

let U(w) = {x | f kx ∈ Uwk
for each 0 ≤ k < n}, then choose

x(w) ∈ U(w) and take Dn =
⋃

w∈I n x(w)

take Dn maximal with the property that there is U such that
#(U(w) ∩ Dn) ≤ 1 for each w ∈ I n

We use the last one. Let D ⊂ X × N be a collection of orbit
segments. Call it topologically separated if this last property holds.
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Main result (simplified form)

Define P(ϕ) = sup{P(D, ϕ) | D top. sep. satisfying (C1)}

(C1) Uniform tightness: ∀ε > 0 there is compact Zε ⊂ X s.t.

Ex ,n(X \ Zε) < ε for all large n and x ∈ Dn

f |Zε and ϕ|Zε are continuous

Theorem

Let X be a complete separable metric space, f : X → X a
measurable map, and ϕ : X → R a bounded measurable function.
Then P(ϕ) = P∗(ϕ).

Remark: (C1) is a condition on D, not an assumption on
(X , f , ϕ). Lusin’s theorem ⇒ suitable D exist for every ergodic µ.

Unbounded ϕ: same form of result, two extra conditions on D
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Specification

Topological transitivity ⇒ for every (x1, n1), . . . , (xk , nk) ∈ X × N
there exist ti ∈ N and x ∈ X such that for each 1 ≤ j ≤ k ,

f
∑j−1

i=0 ni+ti (x) ∈ Bnj (xj , ε).

Definition

X has specification if for every ε > 0 there exists τ ∈ N such that
the above holds with ti ≤ τ .

Key idea: if obstructions to specification have small pressure,
they are invisible to equilibrium states
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Non-uniform specification

Definition

G ⊂ X × N has specification at scale ε if there exists τ ∈ N s.t. for
every (x1, n1), . . . , (xk , nk) ∈ G there exist ti ≤ τ and x ∈ X such

that f
∑j−1

i=0 ni+ti (x) ∈ Bnj (xj , ε) for each 1 ≤ j ≤ k .

G  GM := {(x , n) | (f j(x), k) ∈ G, 0 ≤ j , k ≤ M}
 filtration X × N =

⋃
M GM

Definition

(P,G,S) ⊂ (X × N)3 is a decomposition for (X , f ) if
∀(x , n) ∈ X × N ∃p, g , s ∈ N such that p + g + s = n and

(x , p) ∈ P (f px , g) ∈ G (f p+gx , s) ∈ S

Choose decomposition such that every GM has specification.
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Uniqueness in the presence of small obstructions

Definition

The entropy of obstructions to specification at scale ε is

h⊥spec(ε) = inf{h(P ∪ S, 3ε) | ∃ decomposition (P,G,S)

s.t. every GM has specification at scale ε}

Theorem (C.–Thompson)

Let X be a compact metric space and f : X → X a continuous
map. If there exists ε > 0 such that h⊥exp(28ε) < htop (f ) and

h⊥spec(ε) < htop (f ), then there is a unique MME.

Extending this result requires an interpretation of pressure as a
growth rate.
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Classical variational principle

X compact

f , ϕ continuous

}
⇒ P∗(ϕ) = sup

D top. sep.

(
lim
n→∞

1

n
log Λn(D, ϕ)

)

All three conditions required

X noncompact: may not be any invariant measures

f discts: let X = {0, 1}N, Z = {x | limiting freq. of 1s DNE},
f = σ on Z and f (x) = 0 for x /∈ Z . Then htop(f ) = log 2 but
only invariant measure is δ0

ϕ discts: X as above, f = σ, ϕ = 1Z , then growth rate is
1 + log 2 but supremum of free energies is log 2.
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Proof of variational principle

Two halves of proof:

growth rate ≥ metric free energies P ≥ P∗

If p < hµ(f ) +
∫
ϕ dµ, then there exists a topologically

separated D ⊂ X × N such that P(D, ϕ) ≥ p.

metric free energies ≥ growth rate P∗ ≥ P
If D is topologically separated, then there exists µ ∈Mf (X )
with hµ(f ) +

∫
ϕ dµ ≥ P(D, ϕ)

Note that counterexamples to naive generalisation all have
P∗ < P, not the other way around.

Claim: P∗(ϕ) ≤ P(ϕ) even without any assumptions on
compactness or continuity.
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Proving P ≥ P∗

(1) Fix ergodic µ ∈Mϕ
f (X )

(2) p < hµ(f ) +
∫
ϕ dµ −→ p = h + s

{
h < hµ(f )

s <
∫
ϕ dµ

(3) Use Birkhoff to get C ⊂ X × N such that for all large n

µ(Cn) ≥ 1/2
1
nSnϕ(x) ≥ s for all x ∈ Cn

(4) Use Katok entropy formula to show that if µ(Cn) ≥ 1/2 for all
large n, then for all h < hµ(f ) there is a topologically separated
subset D ⊂ C such that #Dn ≥ enh for large n

(5) Conclude Λn(D, ϕ) ≥ (#Dn)esn and hence P(D, ϕ) ≥ h + s.
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Proving P∗ ≥ P(D, ϕ)

(1) µn =
∑

x∈Dn
ax ,nEx ,n coefficients given by ax ,n = eSnϕ(x)

Λn(D,ϕ)

(2) Weak*-convergent subsequence µnj → µ

(3) Observe that
∫
ϕ dµnj →

∫
ϕ dµ

(4) Check that µ is f -invariant

(5) Show that hµ(f ) +
∫
ϕ dµ ≥ P(D, ϕ)

1 Take partition α < U with µ(∂α) = 0
⇒ µ(∂αq) = 0 for all q ⇒ µnj (A)→ µ(A) for all A ∈ αq

2 This + (top. sep. of D)⇒ estimate Hµ(αq) and hence hµ(f )
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Use of compactness and continuity in P∗ ≥ P(D, ϕ)

(1) µn =
∑

x∈Dn
ax ,nEx ,n coefficients given by ax ,n = eSnϕ(x)

Λn(D,ϕ)

(2) Weak*-convergent subsequence µnj → µ (X compact)

(3) Observe that
∫
ϕ dµnj →

∫
ϕ dµ (ϕ continuous)

(4) Check that µ is f -invariant (f continuous)

(5) Show that hµ(f ) +
∫
ϕ dµ ≥ P(D, ϕ)

1 Take partition α < U with µ(∂α) = 0 (f continuous)
⇒ µ(∂αq) = 0 for all q ⇒ µnj (A)→ µ(A) for all A ∈ αq

2 This + (top. sep. of D)⇒ estimate Hµ(αq) and hence hµ(f )
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Condition (C1)

Recall P(ϕ) = sup{P(D, ϕ) | D top. sep. satisfying (C1)}

(C1) Uniform tightness: ∀ε > 0 there is compact Zε ⊂ X s.t.

Ex ,n(X \ Zε) < ε for all large n and x ∈ Dn

f |Zε and ϕ|Zε are continuous

Given µ ∈Me
f (X ), can strengthen step (3) from proof of P ≥ P∗:

(3*) Lusin ⇒ compact Zε s.t. f |Zε , ϕ|Zε cts, µ(X \ Zε) < ε/2.

Birkhoff gives C s.t.


µ(Cn) ≥ 1/2
1
nSnϕ(x) ≥ s for all x ∈ Cn
Ex ,n(X \ Zε) < ε for all x ∈ Cn

Conclude that P(ϕ) ≥ P∗(ϕ): lose nothing by assuming (C1)
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Utility of (C1) for µn and ϕ

Z =
⋃
ε>0 Zε

Define Y ⊂ Z × N by
Y =

⋃
`∈N Z1/` × {`}

Lifting map τ : Z → Y

µ̂ = µ ◦ τ−1

Projection π : Y → Z

ϕ̂ = ϕ ◦ π
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Use of condition (C1) to prove P∗ ≥ P(D, ϕ)

Y =
⋃
`∈N Z1/` × {`} ⊂ Z × N τ : Z → Y π : Y → Z

(2) Convergent subseq. µnj → µ (µ̂n = µn ◦ τ−1 ∈M(Y ) tight)

(3)
∫
ϕ dµnj →

∫
ϕ dµ (ϕ̂ = ϕ ◦ π continuous on Y )

(4) Check that µ is f -invariant (f continuous on Zε)

(5) Show that hµ(f ) +
∫
ϕ dµ ≥ P(D, ϕ)

1 Take partition α < U with µ(∂α) = 0 (f continuous on Zε)
⇒ µnj (A)→ µ(A) for all A ∈ αq

2 This + top. sep. of D ⇒ estimate Hµ(αq) and hence hµ(f )
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Invariance and entropy of µ

How to show µ = limj µnj is f -inv.? Wk* top. metrisable,

D(µ, f∗µ) ≤ D(µ, µn) + D(µn, f∗µn) + D(f∗µn, f∗µ)

First term → 0 since µnj → µ; second term ≤ 2/n

Third term → 0 if f continuous

(µ(Zε) > 1− ε) and (f |Zε continuous) ⇒ (third term → 0)

(I)

(II)

Remains to estimate entropy hµ(f )

(α < U) + (D sep. by U)⇒ (#Aw ∩ Dn ≤ 1 ∀w ∈ I n)

Can choose α < U with µ(∂α) = 0

If f continuous, then µ(∂αq) = 0 hence µnj (Aw )→ µ(Aw )

Gives estimate on Hµ(αq), hence on hµ(f )

Using sets Zε can show that µnj (Aw )→ µ(Aw ) given (C1)
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Unbounded potential functions

ϕ : X → [−∞,∞]: must guarantee
∫
ϕ dµ ≥ lim

∫
ϕ dµnj

Write ϕ≥K = ϕ1[ϕ≥K ] and ϕ+ = ϕ≥0. Similarly ϕ≤K and ϕ−

(C2) 1
nSnϕ−(x) ≥ L > −∞ for all (x , n) ∈ D with n large

(C3) ϕ+ is uniformly integrable: for all ε > 0 there is K > 0 such
that 1

nSnϕ≥K (x) < ε for all (x , n) ∈ D with n large

Theorem

Let X be a complete separable metric space, f : X → X
measurable, and ϕ : X → [−∞,∞] measurable. Let

P(ϕ) = sup{P(D, ϕ) | D top. sep. and satisfies (C1)–(C3) }.

Then P(ϕ) = sup{hµ(f ) +
∫
ϕ dµ | µ ∈Mf (X ), ϕ ∈ L1(µ)}.
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Supremum over
∫
ϕ dµ > −∞

Previous result considers ϕ− and ϕ+ both integrable.

Alternative definition: only require ϕ− to be integrable.

Require ϕ−1(+∞) to be closed and allow broader class of D:

(C3′) Either ϕ+ is uniformly integrable (as before), or
limn infx∈Dn Ex ,n(ϕ−1(+∞)) > 0, or Ex ,n(ϕ+) diverges uniformly

(∀R > 0∃K > 0 s.t. 1
nSnϕ≤K (x) ≥ R∀(x , n) ∈ D with n large)

Theorem

Consider X a complete separable met. sp., f : X → X measurable,
ϕ : X → [−∞,∞] measurable, ϕ−1(+∞) closed. Let

P(ϕ) = sup{P(D, ϕ) | D top. sep. and satisfies (C1),(C2),(C3′)}.

Then P(ϕ) = sup{hµ(f ) +
∫
ϕ dµ | µ ∈Mf (X ),

∫
ϕ dµ > −∞}.
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Further questions

Gurevich pressure is equal to supremum over compact subshifts.
Can one get an analogous result here?

Probably require P(ϕ) = sup{P(D, ϕ) | D has specification}
May also need extra regularity of ϕ (beyond continuity)

In compact case with bounded ϕ, let Y be the set of discontinuities
for f and ϕ. Does P(Y , ϕ) < P(X , ϕ) imply that supremum can
be taken over all topologically separated D (ignoring (C1))?

In classical setting, a non-uniform specification property gives
uniqueness of equilibrium state as long as P(C, ϕ) < P(ϕ) for a
certain C ⊂ X × N. Does this go through for the more general
notion of pressure as a growth rate?
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