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Abstract. Inducing schemes provide a means of using symbolic dy-
namics to study equilibrium states of non-uniformly hyperbolic maps,
but necessitate a solution to the liftability problem. One approach, due
to Pesin and Senti, places conditions on the induced potential under
which a unique equilibrium state exists among liftable measures, and
then solves the liftability problem separately. Another approach, due
to Bruin and Todd, places conditions on the original potential under
which both problems may be solved simultaneously. These conditions
include a bounded range condition, first introduced by Hofbauer and
Keller. We compare these two sets of conditions and show that for
many inducing schemes of interest, the conditions from the second ap-
proach are strictly stronger than the conditions from the first. We also
show that the bounded range condition can be used to obtain Pesin and
Senti’s conditions for any inducing scheme with sufficiently slow growth
of basic elements.

1. Introduction

Given a compact metric space X, a continuous map f : X → X, and
a continuous potential function ϕ : X → R, an equilibrium measure is a
measure for which the supremum

P (ϕ) := sup
µ∈M

{

hµ(f) +

∫

X

ϕdµ

}

is attained, where M is the class of all f -invariant Borel probability measures
on X. The classical variational principle, due to Walters [Wal75], states that
this supremum is equal to the topological pressure Ptop(ϕ), which is defined
(without reference to a measure) as the growth rate of a certain partition
function.

Interest in equilibrium states dates back to the work of Sinai, Ruelle, and
Bowen in the 1970’s, where it was established that if f is uniformly hy-
perbolic and topologically transitive, then any Hölder continuous potential
function has a unique equilibrium state, which exhibits good ergodic and
statistical properties [Bow75].
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A key element in this now classical work was the construction of a finite
Markov partition, which allows one to obtain a semiconjugacy with a sym-
bolic system on a finite alphabet, and then apply results from the theory of
subshifts of finite type. Thus the finite Markov partition acts as a bridge
between the original system and symbolic dynamics.

Beyond the uniformly hyperbolic case, the situation is somewhat more
delicate. When f is only nonuniformly hyperbolic—for example, when f is
an interval map that has a critical point but still exhibits non-zero Lyapunov
exponents Lebesgue a.e.—it is typically the case that no finite Markov par-
tition can be found, and so a new approach to existence and uniqueness
of equilibrium states is required. There are also examples—such as the
Manneville–Pomeau map or the logistic map f(x) = 4x(1−x)—for which a
finite Markov partition can be found, but certain potentials of interest, such
as the geometric potential − log |f ′|, do not correspond to Hölder continu-
ous potentials in symbolic space, and thus the classical approach does not
go through.

Thus it turns out to be of interest to generalise the classical results in (at
least) two directions. One generalisation is to consider maps which are not
uniformly hyperbolic; another is to find conditions on the potential other
than Hölder continuity which may still yield good results.

An important idea in both these directions is the bounded range condition
(given below as (BT1)), which demands that the difference between the
supremum and infimum of ϕ not be more than the topological entropy of
the map. This condition was introduced by Hofbauer and Keller [HK82]
in the context of piecewise monotonic maps of the interval (which may not
be uniformly hyperbolic), where it was used to prove the existence (but not
necessarily uniqueness) of an equilibrium state with good ergodic properties,
even in the case when ϕ is not Hölder continuous. This condition has since
been used by Denker and Urbański [DU91], Oliveira [Oli03], Varandas and
Viana [VV08], and Bruin and Todd [BT08] in a variety of contexts. (See
also [Hof77] and [Hu08] for a discussion of certain classes of non-Hölder
potentials.)

On the symbolic side of things, the most important extension of the clas-
sical results involves considering symbolic systems on countably infinite al-
phabets; this theory of countable Markov shifts was developed by Buzzi
and Sarig [BS03, Sar99, Sar03], by Mauldin and Urbański [MU01], and by
Yuri [Yur99]. In this setting, Hölder continuity of the potential function ϕ
is no longer enough to guarantee the existence of a unique equilibrium state,
and new conditions on ϕ must be introduced and verified.

To begin with, the classical notion of topological pressure must be replaced
by the Gurevich pressure. The classical pressure is the growth rate of a
partition function which involves a sum over a maximal (n, ε)-separated set;
for a symbolic space with a finite alphabet, it can be shown that one may also
define the partition function via a sum over all periodic orbits of length n.
To define the Gurevich pressure, one uses this method, but the sum is only
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taken over those orbits lying in a fixed 1-cylinder. If ϕ has finite Gurevich
pressure and satisfies a further condition on the growth rate of a related
partition function, known as positive recurrence (the precise definition will
not be needed for our purposes), then we regain existence and uniqueness.

Similarly, if we consider non-symbolic systems without finite Markov par-
titions, the assumption of Hölder continuity of the potential ϕ : X → R

is no longer sufficient to guarantee existence and uniqueness, and further
conditions on ϕ are required; in this context the bounded range condition
mentioned above becomes important.

The bridge between the original system and symbolic dynamics is pro-
vided by the concept of inducing schemes, which generalise the classical no-
tion of first return maps, and were considered by Schweiger in [Sch75, Sch81]
under the name jump transformations, and by Kakutani, Rokhlin, and oth-
ers (see [PS08] for further details). These involve restricting our attention
to a subset W ⊂ X, called the base of the inducing scheme, and an induced
map

F : W →W,

x 7→ f τ(x)(x),

where τ(x) is the inducing time; τ(x) is a return time to W , but is generally
not the first return time. With a suitable choice of W and τ , the induced
map F can in many cases be made equivalent to the full shift on a countable
alphabet, whose symbols correspond to certain subsets of W on which τ is
constant.

Using the correspondence between the induced map F and the full shift
on a countable alphabet, one obtains a correspondence between potentials
on X and induced potentials on symbolic space, and between measures on
X and lifted measures on symbolic space. This correspondence, however,
is incomplete, and there are issues of liftability of measures; there may be
measures on X which do not correspond to a measure on symbolic space.
These issues are explained and addressed in [PSZ08], as well as in [PS08,
BT08, BT09]—the results of the latter three papers are our primary concern
here.

Working from the symbolic side of things, Pesin and Senti [PS08] give
conditions on the induced potential ϕ which allow them to apply Sarig’s
results and show the existence of a unique equilibrium state. These condi-
tions apply to a very large class of maps with inducing schemes, including
multidimensional maps—however, as the approach only produces a unique
equilibrium state within the class of liftable measures, the class of maps for
which they obtain complete results, and show that there is a unique equi-
librium state among all invariant measures, is much smaller. In particular,
they build inducing schemes for certain maps of the interval, including in
particular transverse one-parameter families of unimodal maps, with respect
to which any equilibrium state must be liftable (for certain potentials).
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Working from perspective of the original system, Bruin and Todd [BT08]
use inducing schemes to study a class of one-dimensional maps which is more
general than that considered by Pesin and Senti; they show that Sarig’s
results can also be applied to a certain class of potential functions ϕ which
satisfy the bounded range condition. Because they address the liftability
problem by considering many different inducing schemes, their conditions
are formulated on the original potential ϕ, independently of any inducing
scheme. For the inducing schemes they build, these conditions allow them to
use Sarig’s results; for other inducing schemes on the same class of maps, or
for broader classes of maps, the bounded range condition (BT1) continues
to be relevant (see below), while it is not as clear what role the second
condition (BT2) plays.

The purpose of this brief note is to examine the relationship between the
two sets of conditions just mentioned. This relationship may be summarised
as follows (see Section 2 for the relevant definitions and precise statements):

(1) For the inducing schemes Bruin and Todd consider, their conditions
imply Pesin and Senti’s (the proof of this is implicit in [BT08], but
is not formally stated).

(2) For any inducing scheme satisfying a certain liftability condition
and a certain estimate on the growth rate of basic elements, the
bounded range condition alone is enough to imply Pesin and Senti’s
conditions.

(3) For a very broad class of inducing schemes, one may construct a
potential function which does not have bounded range, but whose
induced potential satisfies Pesin and Senti’s conditions.

Acknowledgements. I would like to thank Sam Senti and Mike Todd for
helpful conversations and correspondence; it was Mike Todd who pointed
out to me that [BT08] contains the elements required to prove Theorem A
below. I would also like to thank my advisor, Yakov Pesin, for many enlight-
ening conversations and much encouragement, and the referees, for helpful
observations and suggestions.

2. Definitions and statement of results

We denote the dynamical system by f : I → I, and write W for the base
of the inducing scheme.

Denote by ML the class of measures which are liftable to the inducing
scheme;1 the first step in showing the existence of a unique equilibrium state
for ϕ is to establish conditions under which the functional hµ(f)+µ(ϕ) can
be shown to obtain a unique maximum among measures in ML, using results
of Sarig [Sar99, Sar03]. Such a measure µ is known as a liftable equilibrium
state; in order to establish that µ is the unique equilibrium state within
the class of all invariant measures, one must build an inducing scheme with

1Bruin and Todd refer to such measures as compatible. The precise definition of lifta-
bility (compatibility) will not concern us here.
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respect to which any equilibrium state is liftable. This is accomplished by
rather different methods in [PS08] and in [BT08, BT09], but this has more
to do with the construction of the inducing schemes themselves, rather than
with the conditions on the potentials, and so the distinction will not be
important for our purposes; rather, we compare the manner in which the
two approaches guarantee that Sarig’s results apply, giving the existence of
a unique liftable equilibrium measure.

In order to give the precise statements of the conditions we wish to com-
pare, we must introduce some more notation and terminology.

Let ϕ : I → R be the potential function, which need not be continuous,
and consider the following related functions:

(1) The induced potential ϕ : W → R, defined by

ϕ(x) := Sτ(x)ϕ(x),

where Snϕ(x) denotes the nth ergodic sum
∑n−1

k=0 ϕ(fk(x)).
(2) The centred potential ψ := ϕ− PL(ϕ), where

PL(ϕ) := sup
µ∈ML

{

hµ(f) +

∫

X

ϕdµ

}

is the restricted pressure obtained by taking the supremum over all
liftable measures. A priori, PL(ϕ) may be infinite, but once it is
shown to be finite, ψ can be defined, and has the property that
PL(ψ) = 0, which proves to be useful in applying Abramov’s and
Kac’s formulae [PS08, Theorem 2.3]. In particular, [PS08, Theorem
4.2] shows that PL(ϕ) < ∞ if ϕ satisfies (SV) below and has finite
Gurevich pressure.

(3) If PL(ϕ) <∞, then one can also define the induced centred potential

ϕ+ := ϕ− PL(ϕ).

Let S be the set of basic intervals for the inducing scheme; that is, W =
⋃

J∈S J , where each J ∈ S is an interval on which the inducing time τ is
constant, and the different elements of S are disjoint (we will use the notation
(S, τ) to identify a particular inducing scheme). Then the nth variation of
the induced potential with respect to the cylinders generated by the inducing
scheme is

Vn(ϕ) = sup
(J1,...,Jn)∈Sn

sup{|ϕ(x)−ϕ(y)| | F k(x), F k(y) ∈ Jk+1 for all 0 ≤ k < n},

and we say that the induced potential has summable variations if

(SV)
∞
∑

n=1

Vn(ϕ) <∞,

The basic result in both sets of papers, which establishes the existence of
a unique liftable equilibrium state, is the following, which is [PS08, Theorem
4.4].
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Proposition 1. Assume that the induced potential ϕ has summable varia-
tions (SV), finite Gurevich pressure, and is positive recurrent. If the induced
centred potential ϕ+ satisfies

sup
J∈S

sup
x∈J

ϕ+(x) <∞,

then there exists an invariant ergodic Gibbs measure νϕ+ on W for the in-
duced map F . Furthermore, if the inducing time is integrable with respect
to this measure—that is, if

∑

J∈S τ(J)νϕ+(J) <∞—then this measure lifts
to a measure µ on I which is the unique liftable equilibrium measure.

Both sets of papers use Proposition 1 in a fundamental way, although it
is not formulated as a separate result in [BT08, BT09]. The papers diverge
when it comes to establishing conditions on the potential function under
which these hypotheses of Proposition 1 are fulfilled; it is these conditions
in which we are interested at present.

The condition (SV) appears in unaltered form in both approaches, and
so we will have nothing further to say about it here.2

Pesin and Senti place the following conditions on the induced and induced
centred potentials:

(PS1): There exists c ∈ R such that
∑

J∈S

sup
x∈J

exp((ϕ− c)(x)) <∞.

(PS2): There exists ε0 > 0 such that
∑

J∈S

τ(J) sup
x∈J

exp(ϕ+(x) + ε0τ(x)) <∞.

Before stating the consequences of these conditions, a few remarks on the
conditions themselves are in order. First we observe that (PS1) is stated
in [PS08] with the more restrictive requirement c = 0. However, since
Vn(ϕ− c) = Vn(ϕ) and (ϕ− c)+ = ϕ+, shifting the potential by a constant
has no effect on (SV) or on (PS2), and since ϕ and ϕ − c have the same
equilibrium states, there is no loss of generality here.

Secondly, we observe that (PS1) follows immediately from (PS2) by
setting c = PL(ϕ), and so is in some sense redundant once all is said and
done. However, since there is no a priori guarantee that PL(ϕ) is finite,
one must deal with the possibility that (PS2) may not even make sense to
state, since ϕ+ is not defined if PL(ϕ) = ∞.

If ϕ is bounded above, then PL(ϕ) ≤ htop(f) + supϕ <∞, and so (PS1)
may be dispensed with. Since most of the potentials we consider in this

2In fact, Pesin and Senti require the slightly stronger condition that Vn(ϕ) decays
exponentially, or equivalently, that ϕ is Hölder. However, their proof of existence and
uniqueness for equilibrium states depends only on the fact that this implies (SV); the
stronger requirement that the rate of decay be exponential only becomes important in the
proof of certain statistical properties.



A NOTE ON TWO APPROACHES TO THE THERMODYNAMIC FORMALISM 7

paper are bounded above as a consequence of the bounded range condition
(BT1) introduced below, we will be primarily concerned with the condition
(PS2).

For unbounded potentials, such as the geometric potential ϕ(x) = − log |f ′(x)|
for an interval map with a critical point, one must first show that ϕ+ is prop-
erly defined, which Pesin and Senti do as follows: (PS1) implies that ϕ− c
has finite Gurevich pressure, and hence PL(ϕ−c) <∞ [PS08, Theorem 4.2],
from which we have PL(ϕ) = PL(ϕ− c) + c <∞ as well.

Pesin and Senti prove the following result [PS08, Theorem 4.5]:

Theorem 2. Let f be a continuous map of a compact metric space, with
finite topological entropy, and fix an inducing scheme for f .3 Let ϕ be a
potential function satisfying (SV), (PS1), and (PS2). Then there exists a
unique liftable equilibrium measure for ϕ.

Pesin and Senti explicitly construct a particular inducing scheme, and
then show that any equilibrium measure must be liftable to this inducing
scheme; thus if Theorem 2 holds, then the unique liftable equilibrium mea-
sure with respect to this inducing scheme is in fact a true unique equilibrium
measure.

Bruin and Todd, on the other hand, construct a broad class of inducing
schemes [BT08, Proposition 1], which we shall denote S, and then show
that any measure with positive Lyapunov exponent is liftable to one of these.
Since they consider more than one inducing scheme, they place the following
conditions on the potential ϕ itself (rather than the induced potential):

(BT1): Bounded range,

supϕ− inf ϕ < htop(f).

(BT2):

Ṽn(ϕ) → 0,

where Ṽn is the nth variation with respect to the cylinders generated
by the branch partition (the branch partition is the partition of I
into maximal intervals of monotonicity for f). In particular, this
implies that ϕ is continuous away from the preimages of the critical
point.

They then prove the following [BT08, Theorem 4]:

Theorem 3. Let f be a topologically mixing C2 interval for which all peri-
odic points are repelling and all critical points are non-flat. If a potential ϕ
satisfies (BT1) and (BT2), and if the induced potential for every inducing
scheme in S satisfies (SV), then

(a) there exists a unique equilibrium state µϕ for ϕ;

3Pesin and Senti place certain requirements on the inducing scheme, which do not
concern us.
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(b) µϕ is liftable to an inducing scheme (S, τ) for which the inducing time
τ is such that the tails νϕ+({x | τ(x) ≥ n}) decrease exponentially in n,

where νϕ+ is the equilibrium state (on W ) for the induced potential ϕ+.

Using the Gibbs property of νϕ+ , we will prove the following in Section 3.

Theorem A. Let f and ϕ be as in Theorem 3, and let (S, τ) ∈ S be an
inducing scheme with exponential tails, as in part (b) of Theorem 3. Then
the induced potential ϕ satisfies (PS1) and (PS2).

For broader classes of inducing schemes, such as those built by Pesin
and Senti, the condition (BT2) is irrelevant, as its utility comes from the
fact that the inducing schemes in S each have a cylinder in the branch
partition as their base. However, the bounded range condition (BT1) is
useful in a broader setting. In particular, it turns out to imply Pesin and
Senti’s conditions for many inducing schemes, including those constructed
in [PS08]. We need the following definition.

Definition 1. Consider an inducing scheme (S, τ); for each n ∈ N, let S(n)
be the number of 1-cylinders J in the base of the inducing scheme for which
τ(J) = n. The growth rate of basic elements of the inducing scheme is

γ(S, τ) = limn→∞

1

n
logS(n).

Theorem B. Consider a continuous map f : X → X of a compact metric
space, and let ϕ : X → R be a potential which satisfies the bounded range
condition (BT1). Let (S, τ) be any inducing scheme for which the following
two conditions hold:

(1) Some measure of maximal entropy is liftable.
(2) γ(S, τ) < htop(f) − (supϕ− inf ϕ).

Then the induced potential ϕ satisfies (PS1) and (PS2).

We remark that the inducing schemes constructed by Pesin and Senti
(for one-parameter families of unimodal maps) are built so that a measure
of maximal entropy is liftable [PS08, Theorems 7.4 and 7.6]. Furthermore,
given any η > 0, they find a set of parameters of positive Lebesgue mea-
sure such that for each parameter, an inducing scheme can be found with
γ(S, τ) < η. For such inducing schemes, Theorem B shows that the bounded
range condition is sufficient to guarantee (PS1) and (PS2).

We also remark that the conditions of the theorem may be weakened
slightly: the assumption that some measure of maximal entropy is liftable
may be weakened to the assumption that there exists a liftable measure
µ ∈ ML such that hµ(f) > supϕ− inf ϕ+γ(S, τ). This will be evident from
the proof.

Finally, we observe that for a very large class of inducing schemes, there
exists a potential which fails to satisfy (BT1), but which has an induced
potential satisfying (PS1) and (PS2).
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Given a continuous map f : X → X of a compact metric space, denote
by A the class of inducing schemes (S, τ) such that

(1) some measure of positive entropy is liftable to S;
(2) S(n) is finite for every n;
(3) There exists n such that if x and y lie in the same n-cylinder of the

induced map (that is, F k(x) and F k(y) lie in the same element J ∈ S
for all 0 ≤ k < n), then x and y have the same pattern of returns to W
prior to their inducing time τ(x) = τ(y); that is, if 1 ≤ i < τ(x) and
f i(x) ∈ J ∈ S, then f i(y) ∈ J as well.

Note that the first two requirements are very weak. We do not require
liftability of a measure of maximal entropy, or of every measure of posi-
tive entropy; liftability of a single measure with positive entropy suffices.
Similarly, we do not require any uniform bound on S(n); we may very well
have S(n) → ∞ (arbitrarily quickly). All that is required is finiteness of the
number of basic elements S(n) with each particular inducing time n.

The third requirement is automatically satisfied if τ is the first return
time to W ; this is the case for the inducing schemes built to study the
Manneville–Pomeau map, for example.

Theorem C. For every inducing scheme (S, τ) ∈ A, there exists a potential
ϕ : X → R such that ϕ satisfies (SV), (PS1), and (PS2), but ϕ does not
satisfy (BT1).

3. Proofs

Proof of Theorem A. Since ϕ is bounded above, we immediately have PL(ϕ) ≤
htop(f) + supϕ <∞, and hence ϕ+ is properly defined.

To show that (PS2) holds, we use the result of Theorem 3(b), which
guarantees the existence of a Gibbs measure νϕ+ and constants γ,C1 > 0
such that

νϕ+({x ∈W | τ(x) ≥ n}) ≤ C1e
−γn

for all n ≥ 1. Because νϕ+ is a Gibbs measure for ϕ+, there exists C2 > 0
such that for every x ∈ J ∈ S, we have

1

C2
≤

νϕ+(J)

exp(PG(ϕ+) + ϕ+(x))
≤ C2.

Thus exp(ϕ+(x)) ≤ C3νϕ+(J), where C3 = C2e
−PG(ϕ+); it follows that

∑

J∈S
τ(J)≥n

sup
x∈J

exp(ϕ+(x)) ≤ C4e
−γn,

for every n, where C4 = C3C1. In particular, we have
∑

J∈S
τ(J)=n

sup
x∈J

exp(ϕ+(x)) ≤ C4e
−γn,
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and thus given 0 < ε < γ,
∑

J∈S
τ(J)=n

n sup
x∈J

exp(ϕ+(x) + εn) ≤ C4ne
−(γ−ε)n.

Summing over n, we obtain
∑

J∈S

τ(J) sup
x∈J

exp(ϕ+(x) + ετ(x))

≤
∑

n≥1

∑

J∈S
τ(J)=n

n sup
x∈J

exp(ϕ+(x) + εn)

≤
∑

n≥1

C4ne
−(γ−ε)n <∞,

and so (PS2) holds. ((PS1) then follows by setting c = PL(ϕ).) �

Proof of Theorem B. As in the proof of Theorem A, the bounded range
condition immediately implies PL(ϕ) <∞, so ϕ+ is properly defined. From
the assumption that a measure of maximal entropy is liftable and from the
assumption on the growth rate of S(n), we see from (BT1) that

PL(ϕ) = sup
µ∈ML

{hµ(f) + µ(ϕ)} ≥

(

sup
µ∈ML

hµ(f)

)

+ inf ϕ

= htop(f) + inf ϕ > supϕ+ γ(S, τ).

It follows that

ϕ+(x) = Sτ(x)ϕ(x) − PL(ϕ)τ(x) ≤ (supϕ− PL(ϕ))τ(x) = −ατ(x),

where α := PL(ϕ) − supϕ > γ(S). Fixing η ∈ (γ(S, τ), α), we observe that
by the definition of γ(S), there exists N ∈ N such that logS(n) ≤ nη for all
n ≥ N . It follows that for ε > 0, we have

∑

J∈S

τ(J) sup
x∈J

exp(ϕ+(x) + ετ(x)) =
∞
∑

n=1

∑

J∈S
τ(J)=n

n sup
x∈J

exp(ϕ+(x) + εn)

≤
∞
∑

n=1

nS(n) exp((−α+ ε)n)

≤
N−1
∑

n=1

nS(n) exp((−α+ ε)n) +
∞
∑

n=N

n exp((−α+ ε+ η)n),

and since η < α, we may find ε > 0 such that −α+ ε+ η < 0. Thus (PS2)
holds, and (PS1) follows. �
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Proof of Theorem C. Consider the function r : N → R
+ given by r(k) =

k(k + logS(k)), and define a potential function ϕ : X → R by

ϕ(x) =

{

−r(τ(x)) x ∈W,

−1 x /∈W.

(Recall that W =
⋃

J∈S J is the base of the inducing scheme (S, τ).)
Now consider the one-parameter family of potential functions tϕ. Observe

that for every invariant measure µ, we have
∫

tϕ dµ ≤ −t, and hence

PL(tϕ) = sup
µ∈ML

{

hµ(f) +

∫

X

tϕ dµ

}

≤

(

sup
µ∈ML

hµ(f)

)

− t

≤ htop(f) − t.

Thus PL(tϕ) ≤ 0 for all t ≥ htop(f). Furthermore, since some measure of
positive entropy is liftable, we have 0 < PL(0) < ∞, and it follows from
continuity of the map t 7→ PL(tϕ) that there exists t ∈ (0, htop(f)] such that
PL(tϕ) = 0. Thus (tϕ)+ = tϕ.

The induced potential for tϕ is

tϕ(x) = t(ϕ(x) + ϕ(f(x)) + · · · + ϕ(f τ(x)−1(x))).

For 1 ≤ i ≤ τ(x) − 1, we have ϕ(f i(x)) ≤ −1; hence writing k = τ(x), we
have

(1) tϕ(x) ≤ −t(r(k) + k − 1).

Now we can verify the conditions on tϕ. First we observe that by the
third condition on inducing schemes in A, we have Vk(tϕ) = 0 for all k ≥ n,
and it follows that tϕ satisfies (SV).

To show (PS1) and (PS2), observe that by (1), we have

(2)

∑

J∈S

sup
x∈J

exp(tϕ(x)) ≤
∑

k≥1

S(k)e−t(r(k)+k−1),

∑

J∈S

τ(J) sup
x∈J

exp((tϕ)+(x) + ετ(x)) ≤
∑

k≥1

kS(k)e−t(r(k)+k−1)+εk.

From our choice of r, we have

r(k)

k + logS(k)
= k,

and so
r(k)

k + logS(k)
>

1

t

for all sufficiently large k. It follows that

tr(k) > k + logS(k),
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whence

S(k)e−tr(k) < e−k,

which implies that the sums in (2) both converge, and so (PS1) and (PS2)
hold.

Now if τ is unbounded, then tϕ is unbounded, and hence (BT1) fails,
which completes the proof in this case.

If τ is bounded, then tϕ satisfies (BT1) for small values of t. However,
by the assumption that S(n) is finite for each n, we see that (S, τ) only
has finitely many basic elements, and so the sums in (PS1) and (PS2) are
finite for any value of t. By choosing t sufficiently large, we can find tϕ such
that (BT1) is not satisfied. �
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360 (2008), no. 4, 2153–2190. MR MR2366978
[MU01] R. Daniel Mauldin and Mariusz Urbański, Gibbs states on the symbolic space
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