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Curvature and growth

Consider a surface with (constant) Gaussian curvature K .

How do circles/discs behave? (Growth of length/area)

How do nearby geodesics behave? (Growth of distance)

How many geodesics are there? (Growth of cardinality)

K = 0K > 0 K < 0

How many geodesics?? Infinitely many!

More precisely, count geodesic segments of length r that
start at x and separate by at least ε (“distinguishable”)
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Curvature and growth

Consider a surface with (constant) Gaussian curvature K .

How do circles/discs behave? (Growth of length/area)

How do nearby geodesics behave? (Growth of distance)

How many geodesics are there? (Growth of cardinality)

K = 0K > 0 K < 0

Circumference = 2πr , area = πr2

Distance constant (if parallel) or linear

Number = 2πr/ε
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Curvature and growth

Consider a surface with (constant) Gaussian curvature K .

How do circles/discs behave? (Growth of length/area)

How do nearby geodesics behave? (Growth of distance)

How many geodesics are there? (Growth of cardinality)

K = 0K > 0 K < 0

Circumference < 2πr , area < πr2

Distance bounded, conjugate points exist

Number of distinguishable geodesics bounded
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Curvature and growth

Consider a surface with (constant) Gaussian curvature K .

How do circles/discs behave? (Growth of length/area)

How do nearby geodesics behave? (Growth of distance)

How many geodesics are there? (Growth of cardinality)

K = 0K > 0 K < 0

Circumference > 2πr , area > πr2

Distance grows. . . how fast?

Number grows. . . how fast?
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Hyperbolic geometry (K ≡ −1) and exponential growth

Upper half-plane model (y > 0)

H2

∂H2

ds2 = dx2+dy2

y2

Disc model (x2 + y2 < 1)

H2
∂H2

ds2 = 4 dx2+dy2

(1−x2−y2)2

Geodesics = circles/lines
orthogonal to ∂H2

Exercise: radius r circle has

circumference = π(er − e−r )

area = π(er − 2 + e−r )

Large scale: send r →∞ and write f (r) ∼ g(r) if f (r)
g(r) → 1

area(B(z , r)) ∼ πer #{ε-separated r -geod. from z} ∼ π

ε
er
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Topology and geometry – surfaces as quotients

Closed surface: compact, connected, boundaryless, orientable

Every such surface admits a metric of constant curvature.

S2 (K = 1) R2/Z2 (K = 0) H2/Γ (K = −1)

All octagons shown are isometric; tile H2.

γa ∈ Isom+(H2) takes a1 7→ a2

Γ = 〈γa, γb, γc , γd〉 discrete

M = H2/Γ surface of genus 2

π1(M) ∼= Γ
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Fundamental group and closed geodesics

M = H2/Γ surface of genus 2, with Γ = 〈γa, γb, γc , γd〉 ∼= π1(M).

Fundamental group produces closed geodesics:

γ ∈ π1(M)  free homotopy class
of closed curves

 
shortest cγ is
closed geod.

Fix p ∈ F . Recall area(B(p, r)) ∼ πer

Let Gr = {γ ∈ Γ : γF ⊂ B(p, r)}
Area estimate ⇒ #Gr ≥ Cer

For all γ ∈ Gr , get |cγ | ≤ d(p, γp) ≤ r .

F

Fc−1

Fd−1

Fc

Fd

Fa−1

Fb−1

Fa

Fb

a1

b1

a2

b2

c1

d1

c2

d2

Suggests #{closed geodesics with length ≤ r} grows exponentially.

Warning: conjugate elements of π1(M) give same closed geodesic.
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Exponential growth associated to M = H2/Γ

Volume growth: area(B(x , t)) ∼ πet (Same for all Γ,M)

Geodesic growth on M: #{ε-sep. t-geodesics on M} ∼ CM,εe
t

Closed geodesics on M:
#{closed geodesics with length ≤ t} grows exponentially in t

1 How precise can we make “grows exponentially in t”?

2 What if M has variable negative curvature?

Also get exponential “word growth” in fundamental group π1(M)
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The first result for closed geodesics

Discrete Γ ⊂ Isom+(H2) is cofinite if M = H2/Γ has finite area.

Theorem (Huber, 1959)

Given M, Γ as above, let P(t) denote the set of closed geodesics
on M with length ≤ t. Then #P(t) ∼ et

t .

Huber’s proof relies on Selberg trace formula, which relates lengths
of closed geodesics to spectrum of the Laplacian.

Analogies to prime number theory and Riemann zeta function.

π(N) ∼ N
log N

T=log N←−−−−→ #{p prime: log p ≤ T} ∼ eT

T

I am the wrong person to tell you about all this. . .



Preliminaries Results Dynamical approach No conjugate points Open questions

The first result for closed geodesics

Discrete Γ ⊂ Isom+(H2) is cofinite if M = H2/Γ has finite area.

Theorem (Huber, 1959)

Given M, Γ as above, let P(t) denote the set of closed geodesics
on M with length ≤ t. Then #P(t) ∼ et

t .

Huber’s proof relies on Selberg trace formula, which relates lengths
of closed geodesics to spectrum of the Laplacian.

Analogies to prime number theory and Riemann zeta function.

π(N) ∼ N
log N

T=log N←−−−−→ #{p prime: log p ≤ T} ∼ eT

T

I am the wrong person to tell you about all this. . .



Preliminaries Results Dynamical approach No conjugate points Open questions

Beyond constant curvature

Let M be a surface of genus ≥ 2 with variable curvature

Still get M = X/Γ where universal cover X is homeomorphic
to disc and Γ ∼= π1(M) acts discretely and isometrically on X

Two Riemannian metrics: g (variable curvature), g0 (constant)

Compact⇒ g = C±1g0⇒ B0(x ,C−1r) ⊂ B(x , r) ⊂ B0(x ,Cr)

Still get exponential volume growth, but lose precise formula

Topological entropy of the “geodesic flow” on M is the number h
such that (# of ε-distinguishable t-geodesic segments) ≈ eht ,
where “≈” is used quite loosely and is weaker than ∼. Formally,

h := lim
ε→0

lim
t→∞

1

t
log(# of ε-distinguishable t-geodesics)
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Margulis asymptotic estimates

Theorem (Margulis, 1970 thesis, published 2004)

Let M be a closed Riemannian manifold with negative sectional
curvatures, and P(t) the set of closed geodesics with length ≤ t.
Let h > 0 be the topological entropy of geodesic flow on M. Then

#P(t) ∼ eht

ht , and

there is a continuous function c on the universal cover X such
that for every x ∈ X we have vol(B(x , r)) ∼ c(x)ehr .

Margulis’s approach was publicized by Anatole Katok via the thesis
of Charles Toll (1984) and the book with Boris Hasselblatt (1995).

An alternate proof was given by Parry and Pollicott (1983).
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Beyond negative curvature

Margulis asymptotics for closed geodesics now proved for:

surfaces with K < 0 outside radially symmetric “caps”
(Bryce Weaver, J. Mod. Dyn. 2014)

rank 1 manifolds of nonpositive curvature – in fact CAT(0)
(Russell Ricks, arXiv:1903.07635)1 (Count homotopy classes)

rank 1 manifolds without focal points
(Weisheng Wu, arXiv:2105.01841)

surfaces of genus ≥ 2 without conjugate points
(C., Knieper, War, Comm. Cont. Math., to appear)

In last 3 settings, volume asymptotics proved by Weisheng Wu
(arXiv:2106.07493)

All these results follow the dynamical approach of Margulis

1Also prior unpublished work in 2002 thesis of Roland Gunesch
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Geodesic flow and horocycles

Study geodesic flow φt on unit tangent bundle SM =
{v ∈ TM : ‖v‖ = 1}
v  geodesic cv with ċv (0) = v  φt(v) := ċv (t)

cv

v

φt(v)

Closed geodesics ↔ periodic orbits for geodesic flow

For the time being, consider constant negative curvature

Each v ∈ SH2 is normal to two horocycles
(horizontal lines or circles tangent to ∂H2)

Normal vector fields W s(v),W u(v) ⊂ SH2

give stable/unstable foliations of SH2

Given w ∈W s(v), we have d(φt(v), φt(w)) = e−td(v ,w)

Given w ∈W u(v), we have d(φt(v), φt(w)) = etd(v ,w)
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Product structure on SH2

Local product structure using W u,W s , and
orbit foliation W 0

Important idea in hyperbolic dynamics:
“Any past can be joined to any future”

Can get a global picture too:

Identify each leaf of W s,u with ∂H2.

For all (ξ, η) ∈ ∂2H2 := (∂H2)2 \ diag
there is a unique geodesic from ξ to η.

Parametrizing gives homeomorphism
SH2 → ∂2H2 × R (Hopf map).
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Setting up the Margulis argument

C (t) = {closed geod. with |c| ∈ (t − ε, t]} P(T ) =
⊔

k C (tk)

Estimate #C (t) and sum (becomes integral as ε→ 0).

Use probability measure νt = 1
#C(t)

∑
c∈C(t)

1
t Lebċ

B = flow box ⊂ SM

S = slab/slice

νt(B) = ε·(# transits)
t·#C(t)

{transits of B by some c ∈ C (t)}

Γ(t) = {conn. components of S ∩ φ−tB}

immediate Closing Lemma νt(B) ≈ ε

t

#Γ(t)

#C (t)
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Completing the argument using ergodic theory

Γ(t) = {conn. components of S ∩ φ−tB} νt(B) ≈ ε

t

#Γ(t)

#C (t)

Liouville measure m on SM given by normalizing ms ×mu × Leb,
where ms,u are Lebesgue measure along W s,u, and satisfy:

mu(φtA) = etmu(A) and ms(φtA) = e−tms(A)

Scaling: m(A) ≈ e−tm(S) for all A ∈ Γ(t)

m(S ∩ φ−tB) ≈ e−tm(S)#Γ(t)

Mixing: m(S∩φ−tB)
m(S) → m(B)

m(B) ≈ e−t#Γ(t)

Equidistribution: νt
wk*−−→ m, so m(B) ≈ ε

t
#Γ(t)
#C(t) ⇒ #C (t) ≈ ε

t e
t
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Ingredients needed for the Margulis argument

Product structure (for flow and measure)

Used for flow box, closing lemma, mixing property

Scaling properties of leaf measure mu

Relied on fact that contraction rate along W s,u is constant

Equidistribution property νt(B)→ m(B)

Can prove it directly, or use the fact that m is the unique
measure of maximal entropy
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Entropy (as analogue of dimension)

d-dimensional measure

m(B(x , ε)) ≈ εd

d = lim
ε→0

logm(B(x , ε))

log ε

d-dimensional set [0, 1]d

N(ε) ≈ ε−d balls to cover

d = lim
ε→0

logN(ε)

− log ε

For entropy of geodesic flow, refine dynamically via Bowen balls

Bt(v , ε) = {w ∈ SM : d(cv (s), cw (s)) < ε for all s ∈ [0, t]}

Topological entropy: h = lim
t→∞

1
t log Λt(ε) (ε fixed small)

Λt(ε) = min{#E :
⋃

v∈E Bt(v , ε) = SM} Λt ≈ eht

Measure-theoretic entropy: µ flow-invariant prob. measure,

hµ =

∫
lim
t→∞

−1

t
logµ(Bt(v , ε)) dµ(v) µ(Bt) ≈ e−hµt
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Variational principle

Topological entropy: Value of h such that
(# of ε-distinguishable t-geodesic segments) ≈ eht

Now consider a flow-invariant probability measure µ.

Measure-theoretic entropy: Value of hµ such that
µ{w : cw ε-indistinguishable from cv through time t} ≈ e−hµt

Variational principle: h = sup{hµ : µ flow-inv. prob. meas.}

If hµ = h then µ is a measure of maximal entropy (MME)

When K ≡ −1, Liouville measure m has hm = 1 = h

In fact, m is the unique MME: Adler, Weiss, Bowen (1970s)
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Anosov flows

Now move to setting of variable negative curvature, so M = X/Γ,
where universal cover X is still homeomorphic to disc.

Still get stable horocycle for all v ∈ SX by

Hs(v) = lim
r→∞

∂BX (cv (r), r)

Also unstable horocycle Hu(v) = Hs(−v).

Normal vec. fields give foliations W s,u with uniform hyperbolicity:

w ∈W s(v) ⇒ d(φtv , φtw) ≤ Ce−λtd(v ,w)

w ∈W u(v) ⇒ d(φ−tv , φ−tw) ≤ Ce−λtd(v ,w)

Here λ > 0, and inequality is for all t ≥ 0.

(φt : SM → SM)t∈R is an Anosov flow

Anosov flows have local product structure
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Margulis leaf measures in variable negative curvature

Surface of genus ≥ 2 ⇒ h > 0 (by exponential volume growth),
but Lebesgue measure on leaves may not scale by

mu(φtA) = ehtmu(A) and ms(φtA) = e−htms(A) (?)

For any Anosov flow, Margulis built mu,ms satisfying (?)

Idea: pull back Leb from φt(W u), scale by e−ht , take a limit

W u φt(W u)φt

Lebmu

lim
t→∞

(φt)∗e−ht

m = mu ×ms × Leb is flow-invariant Bowen–Margulis measure

Unique MME, 6= Liouville unless K ≡ constant

Allows to run the Margulis proof and get #P(t) ∼ eht

ht
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Many constructions of Margulis leaf measures

Various ways to formalize the details of the construction

Fixed point argument on an appropriate space (Margulis 1970)

Can also use Hausdorff measure in appropriate metric
(Hamenstädt 1989, Hasselblatt 1989, ETDS)

Interpretation via Bowen’s alternate definition of entropy
(C.–Pesin–Zelerowicz BAMS 2019, also C. arXiv:2009.09260)

For geodesic flow can also use Patterson–Sullivan approach

Identify leaves of W s,u with ∂X . Build
family {νp : p ∈ X} of measures on ∂X :

νp = lim
s↘h

[
normalize

(∑
γ∈Γ

e−sd(p,γx)δγx

)]
Weights give scaling properties (w.r.t. p)
corresponding to Margulis measure.

x

(Patterson and Sullivan 1970s, Kaimanovich 1990)



Preliminaries Results Dynamical approach No conjugate points Open questions

No conjugate points

A manifold M has no conjugate points if any two points in the
universal cover are joined by a unique geodesic.

P(t) = {free homotopy classes of closed geod. with length ≤ t}

Theorem (C., Knieper, War, to appear in Comm. Contemp. Math.)

Let M be a surface of genus ≥ 2 with no conjugate points. Then
#P(t) ∼ eht

ht .

Margulis’s proof works for any closed manifold with negative
sectional curvatures, in any dimension. Our proof covers some
higher-dimensional examples, but a detailed description is rather
technical.
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Foliations via horospheres are troublesome

M a manifold without conjugate points, X universal cover

Horospheres Hs,u and foliations W s,u as in negative curvature.

W s,u(v) may not contract under φ±t or be transverse
(e.g. R2)

Dependence on v might even be discontinuous
(Ballmann, Brin, Burns “dinosaur” example)

How to define the flow box B? Requires product structure. . .

Define boundary at infinity ∂X as set of equivalence classes of
geodesics, where c1 ∼ c2 when supt>0 d(c1(t), c2(t)) <∞

“Set of possible futures/pasts”

Can we join every past to every future?
In general, no. For surfaces of genus ≥ 2, yes.
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The Morse Lemma (not the one about critical points)

(M, g) surface, genus ≥ 2, no conjugate points; X universal cover

g0 constant negative curvature metric ⇒ g = C±1g0

Exercise (Hyperbolic geometry for g0)

∃ L,R such that if p̄p, pq, qq̄ in picture
are g0-geodesics, then g0-length of p̄q̄
(red dotted curve) is > C 2d0(p̄, q̄)

Consequence: p̄q̄ not a g -geodesic

p̄ q̄

p q

R R

≥ L

≥ R

Morse Lemma: If d0(p, q) ≥ L and c0, c are g0, g -geodesics
from p to q, then Hausdorff distance from c0 to c is ≤ R.

c0

c

p q
≤ R
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A coarse kind of product structure

(M, g) surface, genus ≥ 2, no conjugate points; X universal cover

Morse Lemma: Every g0-geodesic is R-shadowed by a g -geodesic
(may not be unique), and vice versa.

Can join every past and future. (To within 2R)

(ξ, η) ∈ ∂2X represented by g -geodesics cξ, cη

R-shadow cξ, cη by g0-geodesics c0
ξ and c0

η

Join c0
ξ (∞) and c0

η (∞) by g0-geodesic c0

R-shadow c0 by a g -geodesic c , which joins (ξ, η)

Hopf map H : SX → ∂2X × R is onto and continuous.

Not 1-1, which causes technical headaches.

Define flow box following Ricks: B = H−1(P× F× [0, ε])
where P,F are disjoint neighborhoods in ∂X
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New challenges for manifolds with no conjugate points

Desired ingredients for the Margulis argument:

Product structure for flow (Provided by ∂X and Hopf map)

Leaf measures ms ,mu that scale by e±ht (Patterson–Sullivan)

m = ms ×mu × Leb is mixing and is the unique MME (???)

Still get MME, but no proof of mixing or uniqueness

Theorem (C.–Knieper–War 2021, Adv. Math.)

For surfaces of genus ≥ 2 without conjugate points, a “coarse
specification” argument establishes uniqueness of the MME.

With this in hand, Margulis argument (via Ricks) goes through.
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Uniqueness using coarse specification

Joining past to future involves shadowing at some scale δ

Formally, talk about “specification property at scale δ”

Argument due to Rufus Bowen (1970s) gives unique MME if

δ small w.r.t. injectivity radius of M, say injM > 120δ, and

every pair (ξ, η) ∈ ∂2X joined by unique geodesic.

Second condition guarantees an “expansivity” property.

For surfaces with no conjugate points, this condition can fail,
but only on a set of zero entropy.

C.–Thompson (Adv. Math. 2016): unique MME if
“obstructions to specification and expansivity” have small
entropy, with injM > 120δ.

Morse Lemma gives specification at large scale δ (think 3R), but
this can easily be large compared to injM.
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Salvation via residual finiteness

Specification scale δ depends on R from Morse Lemma, likely large.

Get uniqueness if injM > 120δ. Probably false.

Solution: Replace M with a finite cover N with injN big enough.

F

Fc−1

Fd−1

Fc

Fd

Fa−1

Fb−1

Fa

Fb

a1

b1

a2

b2

c1

d1

c2

d2

Entropy-preserving bijection between
flow-invariant measures on SM and SN.

Theorem gives unique MME on SN

Thus there is a unique MME on SM

Why possible? dimM = 2 implies π1(M) is residually finite.
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Higher dimensions

Method works for higher-dim M with no conjugate points if

1 ∃ Riemannian metric g0 on M with negative curvature;

2 divergence property: c1(0) = c2(0)⇒ d(c1(t), c2(t))→∞;

3 π1(M) is residually finite;

4 ∃h∗ < htop such that if µ-a.e. v has non-trivially overlapping
horospheres, then hµ ≤ h∗.

First is a real topological restriction: rules out Gromov example.

Second and third might be redundant? No example satisfying (1)
where they are known to fail

Fourth is true if {v : Hs
v ∩ Hu

v trivial} contains an open set.
Unclear if this is always true.
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Some examples where Margulis asymptotics remain open

Lorenz flow (the famous “butterfly attractor”)

Unique MME: Leplaideur (arXiv:1905.06202)
(also Pacifico, Fan Yang, Jiagang Yang)

Sinai billiard flow on torus with finite number of
convex scatterers

Unique MME: Baladi, Demers (JAMS, 2020)

Bunimovich stadium billiard

No results on MME yet

Geodesic flows in positive curvature (?)

“Biscuit surface” approximates stadium

Kourganoff relates geodesic flow, billiard
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Thank you!
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