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Abstract. We prove several new versions of the Hadamard–Perron
Theorem, which relates infinitesimal dynamics to local dynamics for a
sequence of local diffeomorphisms, and in particular establishes the exis-
tence of local stable and unstable manifolds. Our results imply the clas-
sical Hadamard–Perron Theorem in both its uniform and non-uniform
versions, but also apply much more generally. We introduce a notion of
“effective hyperbolicity” and show that if the rate of effective hyperbolic-
ity is asymptotically positive, then the local manifolds are well-behaved
with positive asymptotic frequency. By applying effective hyperbolicity
to finite orbit segments, we prove a closing lemma whose conditions can
be verified with a finite amount of information.

1. Introduction

Every five years or so, if not more often, someone “discov-
ers” the theorem of Hadamard and Perron, proving it either
by Hadamard’s method of proof or by Perron’s. I myself have
been guilty of this.

D.V. Anosov, 1967. [3, p. 23]

Following in the footsteps of Anosov and many others, we prove several
new versions of the Hadamard–Perron theorem on the construction of lo-
cal stable and unstable manifolds (taking our inspiration from Hadamard’s
method of proof). This theorem in its various incarnations is one of the
key tools in the theory of hyperbolic dynamical systems, both uniform and
non-uniform. Informally, it may be thought of as the bridge between the
dynamics of the derivative cocycle in the tangent bundle and the dynamics
of the original map on the manifold itself.

Although the theorem is primarily used to study a diffeomorphism f on
some Riemannian manifoldM, it is typically stated in terms of a sequence of
germs of diffeomorphisms. That is, one fixes an initial point x ∈M and then
writes fn for the restriction of the map f to a neighbourhood Ωn of fn(x).
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Using local coordinates from Tfn(x)M, we can view Ωn as a neighbourhood

in Rd and write fn : Ωn → Rd, where d = dimM.
Roughly speaking, the content of the Hadamard–Perron theorem is as

follows: if there is an invariant splitting Rd = Eun ⊕Esn and λ < 1 such that
‖Dfn(0)|Esn‖ < λ < ‖Dfn(0)|−1

Eun
‖−1 for every n, then under some additional

assumptions on fn there are uniquely defined local stable manifolds W s
n 3 0

tangent to Esn at 0 such that d(fn(x), fn(y)) ≤ λd(x, y) for every x, y ∈W u
n .

Moreover, if Vn is any admissible manifold transverse to Eun at 0, then the
sequence of admissible manifolds f−k(Vn) converges to the stable manifolds
W s
n−k as k →∞.
Within this general framework, various versions of the theorem have been

stated in which the precise hypotheses and conclusions vary. In these ver-
sions one usually works with stable manifolds, as described above; the local
unstable manifolds are then obtained as being stable for the sequence of
inverse maps f−1

n . We stress that for some technical reasons and in view
of some applications of our results (see Section 5) we will construct local
unstable manifolds first.

In Section 2, we describe how the present paper fits into previous results
and give the precise setting and notation in which we will work.

In Section 3, we give results applying to sequences of C1+α maps. We in-
troduce the notion of effective hyperbolicity, and show that for an effectively
hyperbolic sequence of C1+α diffeomorphisms {fn | n ≥ 0}, one can control
non-uniformities in the admissible manifolds and their associated dynam-
ics. Our main result is Theorem A, a new version of the Hadamard–Perron
theorem that deals with pushing forward an admissible manifold under the
maps fn. While the images may not have good properties for all n, they
do have good properties on the set of effective hyperbolic times, which has
positive asymptotic frequency provided the sequence of maps is effectively
hyperbolic.

While Theorem A is of interest in its own right, it is also used in our
companion paper [5] to construct SRB measures for general non-uniformly
hyperbolic attractors; a description is given in Section 5 (in particular, see
Theorem 5.1). Effective hyperbolicity can be established in situations where
the system has good recurrence properties to a part of the phase space with
uniformly hyperbolic behaviour, and where we have some control on the
behaviour of the map when the trajectory leaves this region.

In Theorem B, we use effective hyperbolicity to give criteria for the ex-
istence and uniqueness of local unstable manifolds for a sequence of C1+α

diffeomorphisms {fn | n ≤ 0}. Morally speaking, Theorems A and B, and
to some degree this entire paper, can be summed up as follows (definitions
of the three properties below can be found in (3.3), (3.4), and (3.5), respec-
tively):
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effective hyperbolicity ⇒ existence of local unstable
(stable) manifolds

effective hyperbolic times ⇒ uniform bounds on dynamics and
geometry of admissible manifolds

asymptotic domination ⇒ uniqueness of local unstable
(stable) manifolds

Our strongest result for C1+α maps is Theorem C, which gives more
precise (and more technical) bounds on the images of admissible manifolds
under the graph transform; these are used in the proofs of Theorems A
and B.

The bounds in Theorem C depend on two things:

(i) linear information on dynamics (controlling contraction and expan-
sion rates of Dfn);

(ii) bounds on non-linearity of dynamics (controlling the modulus of
continuity of Dfn) and non-uniformities in geometry (controlling
the angle between the directions of contraction and expansion).

Using effective hyperbolicity, we can obtain bounds that depend only on
the linear information in (i) and the frequency with which the quantities in
(ii) exceed certain thresholds (see (3.18) and Section 3.3). This is done in
Theorem D.

In Sections 4–6, we give some principal applications of our results to
diffeomorphisms of compact manifolds. First, in Section 4 we introduce
the concept of effective hyperbolicity and establish existence of stable and
unstable local manifolds along effectively hyperbolic trajectories. In Section
5 we show how our results can be used to establish existence of Sinai–
Ruelle–Bowen (SRB) measures for a broad class of diffeomorphisms that are
effectively hyperbolic on a set of positive volume. Finally, in Section 6 we
prove an adaptation of the classical closing lemma to effectively hyperbolic
diffeomorphisms.

Sections 7–10 contain the proofs. The key tool is Theorem 7.1, which is
a strengthened (and rather more technical) version of Theorem C for C1

maps. Theorem 7.1 leads to a result on unstable manifolds in Theorem 8.1,
which is used in the proof of Theorem B.

Following the proofs of the main results, in Section 11 we show that
Theorem 8.1 can be used to prove the classical uniform and non-uniform
Hadamard–Perron theorems for C1 and C1+α diffeomorphisms, respectively
(see Theorems 11.1 and 11.3), and in Section 12 we give some examples illus-
trating the relationship between effective hyperbolicity and classical notions
of non-uniform hyperbolicity.

The following table shows the overall logical structure of our main results
and applications.
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admissible unstable
manifolds manifolds︷ ︸︸ ︷ ︷ ︸︸ ︷

Theorem 7.1
↓ ↘

Theorem C Theorem 8.1
↓ ↓

Theorem 6.4 (Closing lemma) ← Theorem D → Theorem B
↓ ↓

Theorem 5.1 (SRB measures) ← Theorem A Theorem 4.1

Acknowledgments. This paper had its genesis as part of a larger joint
work with Dmitry Dolgopyat, to whom we are grateful for many helpful
discussions and insights. Part of this research was carried out while the
authors were visiting The Fields Institute.

2. Preliminaries

2.1. Notation and general setting. Given n ∈ Z, write Vn = Rd. Let
Ωn ⊂ Vn be an open set containing the origin, and fn : Ωn → Vn+1 a sequence
of maps.1 We make the following standing assumptions.2

(C1) Each fn is a C1+α diffeomorphism onto its image for some α ∈ (0, 1]
(independent of n), and fn(0) = 0.3

(C2) There is a decomposition Vn = Eun ⊕ Esn, which is invariant under
Dfn(0) – that is, Dfn(0)Eσn = Eσn+1 for σ = s, u.

(C3) There are numbers λun, λ
s
n ∈ R and θn, βn > 0 such that for every

vu ∈ Eun and vs ∈ Esn, we have

‖Dfn(0)(vu)‖ ≥ eλun‖vu‖,(2.1)

‖Dfn(0)(vs)‖ ≤ eλ
s
n‖vs‖,(2.2)

](vu, vs) ≥ θn,(2.3)

max(1, |Dfn|α) ≤ βn sin θn+1,(2.4)

where |Dfn|α is the Hölder semi-norm of Dfn (defined in (2.7)).
(C4) There is L > 0 such that |λun| ≤ L, |λsn| ≤ L, and βn+1 ≤ eLβn.

Remark 2.1. Condition (C2) can be trivially satisfied by fixing any decom-
position V0 = Eu0 ⊕Es0 and iterating it under Dfn(0). However, the point is
that the angle between Esn and Eun needs to be controlled by θn as in (2.3),

1Each Vn is identical to all the others, but we use this notation to make it easier to
keep track of the domain and range of various compositions of the maps fn.

2Although these are formulated for all n ∈ Z, we will in fact mostly be interested in
situations where it is appropriate to consider only some subset of Z – see Remark 2.5.

3In the proofs, we will treat the more general (but technically messier) C1 case where
Dfn have moduli of continuity that are not necessarily Hölder.
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and our main results will require some control of θn. More generally, we
remark that the purpose of Condition (C3) is to control the dynamics of
Dfn with respect to the invariant decomposition Vn = Eun ⊕ Esn.

Remark 2.2. In applications, it is often more convenient to work with invari-
ant cone families rather than subspaces – that is, given Eσn ⊂ Vn and ζσn > 0
(σ = s, u), one may consider the cones Kσ

n = {v ∈ Vn | ](v,Eσn) < ζn} and
then replace (C2) and (C3) with the following conditions.

(C2∗) There is a (not necessarily invariant) decomposition Vn = Eun ⊕ Esn
and cone families Ku,s

n around Eu,sn such that Dfn(0)(Ku
n) ⊂ Ku

n+1

and Dfn(0)−1(Ks
n+1) ⊂ Ks

n.
(C3∗) The bounds in (C3) hold for all vu ∈ Ku

n and vs ∈ Ks
n.

Given a cone family satisfying (C2∗) and (C3∗), one can derive splittings
Eun ⊕ Esn satisfying (C2) and (C3). For the stable direction, take Esn to

be any subspace (of the appropriate dimension) in the intersection K̃s
n =⋂

m≥0Dfn+1(0)−1 ◦ · · · ◦Dfn+m(0)−1Ks
n+m, and similarly for Eun but with

m ≤ 0. In the event that we only consider a one-sided infinite sequence of
maps, one of the subspaces can be chosen arbitrarily in its cone.

Remark 2.3. Condition (C4) is automatic if the sequence of maps is ob-
tained from a diffeomorphism on a compact manifold via local coordinates
along a trajectory. We stress that βn may become arbitrarily large and θn
arbitrarily small; moreover the rate at which they become large and small
is not required to be subexponential (compare this with the requirements in
non-uniform hyperbolicity that sequences of constants be tempered).

Remark 2.4. If the sequence fn is obtained from a diffeomorphism f via
local coordinates along a trajectory, and if the splitting in Condition (C2)
comes from a dominated splitting for f , then λsn < λun for all n. In this
case two nearby choices of Eun will have the same asymptotic behaviour as
n → +∞, while there is only one choice of Esn for which limn→∞ θn > 0.
Similarly, two nearby choices of Esn will have the same asymptotic behaviour
as n→ −∞, while there is only one choice of Eun for which limn→−∞ θn > 0.

This behaviour in the tangent space still occurs if the splitting is only
asymptotically dominated – that is, if

∑N
n=1(λun − λsn) becomes arbitrarily

large with N , even though individual terms may be negative. An important
part of any Hadamard–Perron theorem is to establish this asymptotic be-
haviour not just for subspaces in the tangent space, but for submanifolds in
Vn itself.

Remark 2.5. The range of values that n takes will vary.

(1) In Section 3.1, we will consider all n ≥ 0, since Theorem A concerns
asymptotic behaviour of admissible manifolds as n→∞.

(2) In Section 3.2, we will consider all n ≤ 0, since Theorem B con-
cerns true unstable manifolds, which are defined in terms of their
asymptotic behaviour under the maps f−1

n .
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(3) In Sections 3.4–3.5, we will consider finitely many n, say 0 ≤ n ≤ N ,
since Theorems C–D concern images of admissible manifolds under
finite compositions of the maps fn.

We also make the standing assumption that the domain Ωn is large
enough. More precisely, once parameters τn, rn, γn are specified (see (2.6)),
we have

(C5) Ωn ⊃ Bu
n(rn)×Bs

n(τn + γnrn),

where Bu
n(rn) is the ball of radius rn in Eun centred at 0, and similarly for

Bs
n. It will suffice to have Ωn ⊃ B(0, η) for some fixed η > 0.
Given m < n, we will write

(2.5) Fm,n = fn−1 ◦ fn−2 ◦ · · · ◦ fm
wherever the composition is defined, and we will let Ωn

m be the connected

component of
⋂n−1
k=m(Fm,k)

−1(Ωk) that contains 0. We will be concerned
exclusively with the action of

Fm,n : Ωn
m → Vn;

in particular, given any W ⊂ Vm, we will write

Fm,n(W ) := Fm,n(W |Ωnm).

From now on we will use coordinates on Vn given by Eun⊕Esn: for x ∈ Vn,
we write x = xu + xs = (xu, xs), where xu ∈ Eun and xs ∈ Esn. We will
usually use the letter x for a point in Vn and the letter v for a vector in
Eun. We will work with admissible manifolds given as graphs of functions
ψ : Bu

n(rn) ⊂ Eun → Esn, where graphψ = {(v, ψ(v)) | v ∈ Eun}.
Given sequences of numbers rn > 0 (presumed small), τn, σn ≥ 0 (also

small), and κn > 0 (presumed large), we will be interested in admissible
manifolds that arise as graphs of functions in the following class:

(2.6)

Cn = Cn(rn, τn, σn, κn)

=
{
ψ : Bu

n(rn)→ Esn | ψ is C1+α, ‖ψ(0)‖ ≤ τn,

‖Dψ(0)‖ ≤ σn, and |Dψ|α ≤ κn
}
,

where

(2.7) |Dψ|α := sup
v1 6=v2∈Bun(rn)

‖Dψ(v1)−Dψ(v2)‖
‖v1 − v2‖α

.

We will refer to rn, τn, σn, κn collectively as the parameters of Cn, and will
say that they are uniformly bounded on a set Γ ⊂ Z if4

inf
n∈Γ

rn > 0, sup
n∈Γ

max{τn, σn, κn} <∞.

4In practice τn, σn will actually be quite small, and so the battle will be to control rn
and κn.
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Remark 2.6. If we write γn = σn + κnr
α
n , then the conditions in (2.6) imply

the bound ‖Dψ‖ ≤ γn for all ψ ∈ Cn, where

‖Dψ‖ := sup
v∈Bun(rn)

‖Dψ(v)‖.

In the proofs, and in particular in Theorem 7.1, we will give results that
allow us to consider the space of functions ψ ∈ Cn that satisfy ‖Dψ‖ ≤ γn
for some (potentially) smaller value of γn. Our main results (Theorems A–
D) will include the assumption that there is some small γ̄ > 0 such that
σn + κnr

α
n ≤ γ̄ for every n, so that in particular ‖Dψ‖ ≤ γ̄ for all ψ ∈ Cn.

LetWn be the space of admissible manifolds corresponding to Cn – that is,
the collection of submanifolds of Vn that arise as graphs of functions in Cn.
If W = graphψ ∈ Wn is such that some relatively open set U ⊂ fn(W ) is in
Wn+1, then we let ψ̄ be the unique member of Cn+1 such that U = graph ψ̄.
We write Gn : ψ 7→ ψ̄ for the corresponding map, called the graph transform.

Note that Gn is not necessarily defined on all of Cn, since for a given
W ∈ Wn, the image fn(W ) need not have any subsets in Wn+1. Thus an
important part of what follows is to give conditions on the parameters such
that Gn : Cn → Cn+1 is defined on all of Cn. If this is the case for every n,
then we write

Gn = Gn−1 ◦Gn−2 ◦ · · · ◦G0 : C0 → Cn.

2.2. Relations to known results. In the uniformly hyperbolic setting,
the relevant version of the Hadamard–Perron Theorem may be found in [7,
Theorem 6.2.8]; we state a related result as Theorem 11.1. For this version,
one makes the following assumptions.

(i) Uniform expansion: infn λ
u
n > 0.

(ii) Dominated splitting: infn λ
u
n > supn λ

s
n.

(iii) Uniform transversality: infn θn > 0.
(iv) fn is C1 and ‖Dfn(x)−Dfn(0)‖ is sufficiently small.

Under these assumptions, the local manifolds W u
n are shown to have uni-

formly large size.
In the non-uniformly hyperbolic setting, the typical approach is to use

Lyapunov coordinates so that (i)–(iii) still hold, while the non-linear part
‖Dfn(x)−Dfn(0)‖ may be large, and in particular (iv) is replaced with

(iv′) fn is C1+α and limn→±∞
1
|n| log |Dfn|α < α infn λ

u
n.

Then one uses the version of the theorem found in [4, Theorem 7.5.1], stated
below as Theorem 11.3. A key difference in the conclusion here is that the
size of the W u

n may decay as n→ ±∞, although the rate of decay is slower
than the rate of contraction or expansion in the dynamics.

When the trajectories to which the non-uniform Hadamard–Perron the-
orem is applied are generic trajectories for a hyperbolic invariant measure,
one can conclude that although the size of the manifolds Wn may become
arbitrarily small, it nevertheless recurs to large scale and is bounded away
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from 0 on a set of times with positive asymptotic frequency. However, if one
wishes to use some version of the Hadamard–Perron theorem to construct
manifolds Wn that can be used in establishing the existence of invariant
measures with certain properties, as in [5], then the recurrence to large scale
must be established without recourse to ergodic theory.

This idea – that one may wish to obtain results on admissible manifolds
and unstable manifolds without needing to invoke the presence of a specific
invariant measure – is a principal motivator for the results in this paper.
We impose various conditions on the maps fn under which our results hold:
certain conditions hold whenever fn is a typical sequence of germs for some
invariant measure, but we do not require any knowledge about such a mea-
sure for the theorems themselves.

We accomplish recurrence to large scale for admissible manifolds in The-
orem A, where we consider C1+α maps for which (i)–(iii) may fail. We in-
troduce the notion of effective hyperbolicity for the sequence {fn}; roughly
speaking, this requires that the expansion in the unstable direction over-
comes the defect from domination and the decay of the angle. For an
effectively hyperbolic sequence of maps, there is a certain sequence of ef-
fective hyperbolic times along which a sequence of admissible manifolds is
well-behaved, and in particular the graph transform

Gn : C0(r̄, 0, 0, κ̄)→ Cn(r̄, 0, 0, κ̄)

is well defined. These effective hyperbolic times are obtained via Pliss’
lemma and are analogous to the well-established notion of hyperbolic times.
However, there is a key difference between these two notions: while at hy-
perbolic times the derivative of the map acts uniformly hyperbolically on
the tangent space, at effective hyperbolic times it is the map itself whose ac-
tion is locally uniformly hyperbolic. Although the set of effective hyperbolic
times is a subset of the set of hyperbolic times, it nevertheless has positive
asymptotic density under the hypotheses of the theorem.

Theorem B deals with the unstable manifolds themselves (rather than the
admissibles), which exist as soon as the sequence is effectively hyperbolic and
are unique as soon as the splitting is asymptotically dominated.

Theorem C gives precise conditions on the parameters rn, τn, σn, γn, κn
for the graph transform to be well-defined, and Theorem D uses effective
hyperbolicity to explicitly determine sequences of parameters satisfying the
conditions of Theorem C.

3. Main Results

3.1. Effective hyperbolic times and recurrence to large scale. We
now describe a setting in which the Cn can be chosen so that the graph
transforms are defined for all n and the parameters are uniformly bounded
on a set of times with positive asymptotic density.

Our approach is modelled on the notion of hyperbolic times, which were
introduced in [1]. These are times n such that the composition fn−1 ◦ · · · ◦



HADAMARD–PERRON THEOREMS AND EFFECTIVE HYPERBOLICITY 9

fk+1 ◦ fk has uniform expansion along Euk for every 0 ≤ k < n. In our
setting, where the splitting Vn = Eun⊕Esn may not be uniformly dominated,
we must strengthen this notion to that of an effective hyperbolic time, where
the good properties of the derivative cocycle can be brought back to the
maps fn themselves. The set of effective hyperbolic times is contained in
the set of hyperbolic times, but there may be hyperbolic times that are not
effective.

Abundance of hyperbolic times is assured by assuming that λun has asymp-
totically positive averages. For abundance of effective hyperbolic times, we
introduce a quantity that depends not just on λun, but also on λsn and βn.5

If this quantity has asymptotically positive averages, then there is a positive
frequency of effective hyperbolic times.

Let {fn | n ≥ 0} satisfy (C1)–(C5). The following quantity may be
thought of as the defect from domination (recall that α ∈ (0, 1] is the Hölder
exponent of Dfn):

(3.1) ∆n := max

(
0,
λsn − λun

α

)
.

Note that ∆n = 0 if λsn ≤ λun, which is the case when the splitting Eun ⊕Esn
is dominated. Fix a threshold value β̄ and define

(3.2) λen =

{
λun −∆n if βn ≤ β̄,
min

(
λun −∆n,

1
α log βn−1

βn

)
if βn > β̄.

Obviously λen depends on the choice of β̄, but we will suppress this depen-
dence in the notation to minimise clutter.

Definition 3.1. The sequence {fn | n ≥ 0} is effectively hyperbolic with
respect to the splitting Eun ⊕ Esn if there exists β̄ such that

(3.3) χe := lim
n→∞

1

n

n−1∑
k=0

λek > 0.

Remark 3.1. See Section 3.3 for a discussion of ways that effective hyper-
bolicity can be verified.

Remark 3.2. It is natural to consider effective hyperbolicity when Eun is the
full unstable subspace, but the notion can also be applied when Eun is a
strong unstable subspace corresponding to the largest Lyapunov exponents,
or even when Eun is a weak unstable subspace and the largest Lyapunov
exponents are included in Esn, provided the expansion in Eun overcomes the
failure of domination.

5Recall that these are defined in (C3).
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Definition 3.2. Given fixed thresholds β̄ and χ̂ > 0, we say that n is an
effective hyperbolic time if

(3.4)
1

n− k

n−1∑
j=k

λej ≥ χ̂

for every 0 ≤ k < n.

Remark 3.3. If we replace λej in (3.4) with λuj , then we arrive at the usual
definition of hyperbolic time. Because λej ≤ λuj , we see that the set of effec-

tive hyperbolic times is a (generally proper) subset of the set of hyperbolic
times.

Given a subset Γ ⊂ N, write ΓN = Γ ∩ [0, N) and denote the lower
asymptotic density of Γ by

δ(Γ) = lim
N→∞

1

N
#ΓN .

The upper asymptotic density δ(Γ) is defined similarly.

Definition 3.3. The splitting Eun ⊕ Esn is asymptotically dominated if

(3.5) χg := lim
n→∞

1

n

n−1∑
k=0

(λuk − λsk) > 0.

In this section and the next we will consider the following collection of
admissible manifolds for parameters r, κ > 0:

Ĉn(r, κ) = Cn(r, 0, 0, κ) = {ψ : Bu
n(r)→ Esn | ψ ∈ C1+α,

ψ(0) = 0, Dψ(0) = 0, |Dψ|α ≤ κ}.

Remark 3.4. As in the definition of Cn, note that every ψ ∈ Ĉn satisfies
‖Dψ‖ ≤ γ := κrα.

The following theorem shows that the pushforwards of admissible man-
ifolds are well-behaved at the set Γ of effective hyperbolic times, and that
Γ has positive lower asymptotic density as long as the asymptotic average
rate of effective hyperbolicity is positive.

Theorem A. Given β̄, L > 0, α ∈ (0, 1], χ̂u > χ̄u > 0, and χ̂g > χ̄g > 0, the
following is true for every sufficiently small γ̄, r̄, θ̄ > 0 and every sufficiently
large κ̄ satisfying κ̄r̄α ≤ γ̄. If {fn | n ≥ 0} satisfies (C1)–(C5) and is
effectively hyperbolic with respect to the splitting Eun ⊕ Esn, with χe > χ̂u

(using the threshold β̄), then

(3.6) δ(Γ) ≥ χe − χ̂u

L− χ̂u
> 0,

where Γ is the associated set of effective hyperbolic times. Moreover, assum-
ing β0 ≤ β̄, the following are true for every n ∈ Γ.

I. θn ≥ θ, where θn controls ](Eun, E
s
n) as in (2.3).
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II. The graph transform Gn : Ĉ0(r̄, κ̄) → Ĉn(r̄, κ̄) is well-defined; in par-

ticular, given ψ0 ∈ Ĉ0, the C1+α function ψn = Gnψ0 : Bu
n(r̄) → Esn

satisfies
(a) ψn(0) = 0, Dψn(0) = 0, ‖Dψn‖ ≤ γ̄, and |Dψn|α ≤ κ̄;
(b) graphψn = F0,n(graphψ0).

III. If x, y ∈ (graphψm) ∩ Ωn
m for some 0 ≤ m ≤ n, then

(3.7) ‖Fm,n(x)− Fm,n(y)‖ ≥ e(n−m)χ̄u‖x− y‖.

IV. If the splitting Eun⊕Esn is asymptotically dominated with χg > χ̂g, then

for every ϕ0, ψ0 ∈ Ĉ0 we have

(3.8) lim
n→∞
n∈Γ

1

n
log ‖ψn − ϕn‖C0 < −χ̄g.

The rest of the theorems in this paper give results that apply to times
n /∈ Γ as well. Roughly speaking, to each n we will associate a constantMn ≥
0 that controls how “bad” the dynamics and geometry of the admissible
manifolds at time n can be, and which has the property that Mn = 0 for all
n ∈ Γ.

Remark 3.5. The formulation of the dependence between the various pa-
rameters and constants appearing in Theorem A will be echoed throughout
the paper. The meaning of “sufficiently small” and “sufficiently large” here
is that once β̄, L, α, χ̂u,g, χ̄u,g are fixed, there exist γ̃, r̃, θ̃, κ̃ > 0 such that
if γ̄ ∈ (0, γ̃], r̄ ∈ (0, r̃], θ̄ ∈ (0, θ̃], and κ̄ ≥ κ̃, and if in addition κ̄r̄α ≤ γ̄,
then the rest of the statement of the theorem is valid. The key point is
that γ̃, r̃, θ̃, κ̃ do not depend on fn directly, or even on λu,sn , λen, βn, but only
on β̄, L, α, χ̂u,g, χ̄u,g. One should imagine that β̄, L are very large, since the
battle is to control what happens when the non-linearities in fn become
strong.

3.2. Effective hyperbolicity and unstable manifolds. We consider now
a sequence of maps {fn | n ≤ 0}, and using the same notation as in the
previous section, make the following definitions that are exact analogues of
the definitions there.

Definition 3.4. The sequence {fn | n ≤ 0} is effectively hyperbolic with
respect to the splitting Eun ⊕ Esn if there exists β̄ such that

(3.9) χe := lim
n→−∞

1

|n|

−1∑
k=n

λek > 0.

Definition 3.5. The splitting Eun ⊕ Esn for {fn | n ≤ 0} is asymptotically
dominated if

(3.10) χg := lim
n→−∞

1

|n|

−1∑
k=n

(λuk − λsk) > 0,
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The following quantity will be used to control the size and regularity of the
local unstable manifolds; it is finite whenever {fn} is effectively hyperbolic
and χ̂u ∈ (0, χe):

(3.11) Mn(χ̂u) := sup
m≤n

n−1∑
k=m

(χ̂u − λek).

As usual, Mn(χ̂u) depends on the choice of threshold β̄, but we will suppress
this dependence in the notation.

Theorem B. Given β̄, L > 0, α ∈ (0, 1], χ̂u > χ̄u > 0, and χ̂g > 0, the
following is true for every sufficiently small γ̄, r̄, θ̄ > 0 and every sufficiently
large κ̄ satisfying κ̄r̄α ≤ γ̄. If {fn | n ≤ 0} satisfies (C1)–(C5) and is
effectively hyperbolic with respect to the splitting Eun ⊕ Esn, with χe > χ̂u

(using the threshold β̄), and if in addition βm ≤ β̄ for infinitely many m,
then we have the following conclusions.

I. The set {n ≤ 0 | Mn(χ̂u) = 0} has lower asymptotic density at least

(χ
e−χ̂u
L−χ̂u )2 > 0.

II. θn ≥ θ̄e−αMn(χ̂u) for every n ≤ 0.

III. There exists ψn ∈ Ĉn(r̄e−Mn(χ̂u), κ̄eαMn(χ̂u)) such that fn(graphψn) ⊃
graphψn+1 for every n < 0. In particular, ψn(0) = 0, Dψn(0) = 0,

‖Dψn‖ ≤ γ̄, |Dψn|α ≤ κ̄eαMn(χ̂u).

IV. If x, y ∈ (graphψm) ∩ Ωn
m for some n > m, then

(3.12) ‖Fm,n(x)− Fm,n(y)‖ ≥ e−Mn(χ̂u)e(n−m)χ̄u‖x− y‖.

V. If the splitting Eun⊕Esn is asymptotically dominated with χg > χ̂g, then

ψn is the unique function in Ĉn(r̄e−Mn(χ̂u), κ̄eαMn(χ̂u)) satisfying III.

VI. If in addition to asymptotic domination we have the stronger condition

(3.13) χs := lim
n→−∞

1

|n|

−1∑
k=n

λsk < χ̄u,

then ψn admits the following characterisation: if x ∈ Ωn and C ∈ R
are such that

(3.14) ‖F−1
m,n(x)‖ ≤ Ce−(n−m)χ̄u

for every m, then x ∈ graphψn.

Remark 3.6. Theorem B shows that the unstable manifolds have uniformly
bounded size, curvature, and dynamical properties on the set of times ΓM :=
{n |Mn(χ̂u) ≤M} for each M ≥ 0. As M increases, the bounds get worse:
size decreases, while curvature and the constant C in (3.14) increase. The
trade-off is that it is sometimes possible to guarantee that δ(ΓM ) goes to 1
as M →∞, in which case we obtain uniform control on a set of times with
arbitrarily large lower asymptotic density.
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3.3. Verifying effective hyperbolicity. The quantity λen that appears in
the definition of effective hyperbolicity depends on λun, λ

s
n, and βn. If one has

some information about the frequency with which βn becomes large (that is,
|Dfn|α becomes large and/or θn becomes small), then effective hyperbolicity
can be verified by considering only λun and λsn.

To this end, suppose that

(3.15) lim
β̄→∞

δ{n | βn > β̄} = 0,

where δ is upper asymptotic density. Let λun, λ
s
n be as before, and let ∆n be

the defect from domination defined in (3.1). Then effective hyperbolicity of
{fn} reduces to the condition that

(3.16) χu := lim
n→∞

1

n

n−1∑
k=0

(λuk −∆k) > 0.

Note that (3.16) does not depend on β̄.
Fix χ > χ̂ > 0 and let Γu be the set of χ-hyperbolic times for the sequence

λun −∆n. That is, n ∈ Γu if and only if
∑n−1

j=k (λuj −∆j) ≥ (n − k)χ for all
0 ≤ k < n. Let Γβ̄ be the set of effective χ̂-hyperbolic times when λen is

defined using the threshold β̄. The following result says that asymptotically,
almost every hyperbolic time for λun −∆n is an effective hyperbolic time.

Proposition 3.7. If a sequence {fn | n ≥ 0} satisfies (3.15) and (3.16),
then δ(Γu) > 0 and limβ̄→∞ δ(Γ

u \ Γβ̄) = 0. In particular, the sequence fn
is effectively hyperbolic and Theorem A applies.

Similar observations hold regarding Theorem B. For a sequence {fn | n ≤
0}, we can replace (3.16) with

(3.17) χu := lim
n→−∞

1

|n|

−1∑
k=n

(λuk −∆k) > 0,

and obtain the following.

Proposition 3.8. If a sequence {fn | n ≤ 0} satisfies (3.15) and (3.17),
then it is effectively hyperbolic and has limm βm < ∞. In particular, Theo-
rem B applies.

Proposition 3.8 allows us to verify effective hyperbolicity by bounding the
asymptotic average of λen. However, a computation of the constants Mn(χ̂u)
that appear in Theorem B (see (3.11)) requires knowledge of λen itself, and
not just its asymptotic average. A slight simplification can be achieved by
observing that (C4) implies the bound λen ≥ −(1 + 1

α)L =: −L′, which
allows us to forgo computing the exact sum in (3.11) and instead use

(3.18) Mn(χ̂u) ≤ sup
m≤n

(
(n−m)χ̂−

n−1∑
k=m

(
λuk −∆k − 2L′1k(β̄)

))
,
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where 1n(β̄) = 1 if βn > β̄ and is 0 otherwise. This has the advantage that
the quantities |Dfn|α and θn enter only through the number of times that
the threshold β̄ is exceeded, and the rest of the expression depends only
on the linear terms λu,sn . We will use this approach in Section 6 to state a
closing lemma using effective hyperbolicity.

3.4. Parameter conditions for a well-defined graph transform. The-
orems A and B are both ultimately derived from the following result, which
gives more precise conditions on the parameters rn, τn, σn, κn for the graph
transform Gn : Cn → Cn+1 to be well-defined. Note that now we allow τn
and σn to take positive values, which puts us in a more general setting than
the previous sections.

Given δ > 0, consider the following recursive relations on the parameters:

rn+1 ≤ e(λun−δ)rn,(3.19)

τn+1 ≥ e(λsn+δ)τn,(3.20)

σn+1 ≥ e(λsn−λun+δ)σn,(3.21)

κn+1 ≥ e(λsn−(1+α)λun+δ)κn.(3.22)

Remark 3.9. Removing δ from (3.19)–(3.22) gives the exact bounds that the
parameters would be required to follow if the maps fn were linear.

Given ξ, γ̄ > 0, consider the following additional set of bounds:

βnr
α
n ≤ ξ,(3.23)

βn ≤ ξκn,(3.24)

τn ≤ rn,(3.25)

κnτ
α
n ≤ σn,(3.26)

σn + κnr
α
n ≤ γ̄.(3.27)

Theorem C. For every δ > 0, L > 0, and α ∈ (0, 1], there exist ξ > 0 and
γ̄ > 0 such that the following is true.

For each 0 ≤ n < N let the maps fn and the parameters rn, κn > 0,
τn, σn ≥ 0 be such that (C1)–(C5) and (3.19)–(3.27) are satisfied. Then
the following are true.

I. The graph transform

(3.28) Gn : Cn(rn, τn, σn, κn)→ Cn+1(rn+1, τn+1, σn+1, κn+1)

is well-defined for each 0 ≤ n < N .

II. Given ψ0 ∈ C0, the C1+α functions ψn = Gnψ0 : Bu
n(rn)→ Esn have the

following property: if x, y ∈ (graphψm)∩Ωn
m for some 0 ≤ m ≤ n, then

(3.29) ‖Fm,n(x)− Fm,n(y)‖ ≥ e
∑n−1
k=m(λuk−δ)‖x− y‖.

III. Fix (v0, w0) ∈ Ωn
0 and let (vn, wn) = F0,n(v0, w0). Then

(3.30) ‖wn − ψn(vn)‖ ≤ e
∑n−1
k=0 (λsk+δ)‖w0 − ψ0(v0)‖.
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Moreover, if (v′n, w
′
n) = F0,n(v′0, w

′
0) is another trajectory such that

‖w′0 − w0‖ ≤ γ̄‖v′0 − v0‖, then

(3.31) ‖vn − v′n‖ ≥ e
∑n−1
k=0 (λuk−δ)‖v0 − v′0‖.

IV. Given ψ0, ϕ0 ∈ C0(r0, τ0, σ0, κ0), the graph transform Gnψ0 is completely
determined by the restriction of ψ0 to Bu

0 (r̂n), where

(3.32) r̂n := e
∑n−1
k=0 (−λuk+δ)rn + 3ξ

n−1∑
k=0

e
∑k−1
j=0 (−λuj +δ)τk,

and similarly for ϕ0. In particular, we have

(3.33) ‖ψn − ϕn‖C0 ≤ e
∑n−1
k=0 (λsn+δ)

∥∥∥(ψ0 − ϕ0)|Bu0 (r̂n)

∥∥∥
C0

Remark 3.10. Observe that Theorem C can be applied to the spaces Ĉn of
admissible manifolds passing through the origin and tangent to Eun by taking
σn = τn = 0. In this case conditions (3.19)–(3.27) reduce to

rn+1 ≤ e(λun−δ)rn βn ≤ ξmin(κn, r
−α
n ),

κn+1 ≥ e(λsn−(1+α)λun+δ)κn κnr
α
n ≤ γ̄,

and (3.32) simplifies to r̂n := e
∑n−1
k=0 (−λuk+δ)rn.

3.5. Finite sequences of diffeomorphisms. We shall show how the no-
tion of effective hyperbolicity guarantees the existence of sequences of pa-
rameters that satisfy both the recursion relations (3.19)–(3.22) and the
bounds (3.23)–(3.27), while simultaneously giving good control on the uni-
formity of rn and κn.

Theorem D. Fix L, β̄ > 0 (presumed large), α ∈ (0, 1], χu > χ̂u > χ̄u > 0,
and χ̂s < χ̄s < 0. Then for all sufficiently small γ̄, r̄, θ > 0, all sufficiently
small σ̄, τ̄ ≥ 0, all sufficiently large κ̄ > 0, and all κ̂ ≥ κ̄ such that

(3.34) τ̄ ≤ r̄, κ̂τ̄ ≤ σ̄, σ̄ + κ̂r̄α ≤ γ̄,

every sequence of maps {fn | 0 ≤ n < N} satisfying (C1)–(C5) and β0 ≤ β̄
has the following properties.

I. For 0 ≤ n ≤ N , let Mu
n ≥ 0 be such that

(3.35)

n−1∑
k=m

λek ≥ (n−m)χ̂u −Mu
n

for all 0 ≤ m < n, and let M s
0 be such that

(3.36)
n−1∑
k=0

λsk ≤ nχ̂s −Mu
n +M s

0
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for all 0 ≤ n ≤ N . Then θn ≥ θ̄e−αM
u
n and the graph transform

(3.37) Gn : C0(r̄, τ̄ e−M
s
0 , σ̄e−αM

s
0 , κ̂)

→ Cn(r̄e−M
u
n , τ̄ e−M

u
n enχ̄

s
, σ̄eαnχ̄

s
, κ̄eαM

u
n )

is well-defined whenever κ̂ ≤ κ̄eαnχ̄u.

II. Given ψ0 ∈ C0, the C1+α functions ψn = Gnψ0 : Bu
n(r̄e−M

u
n )→ Esn have

the following properties: if x, y ∈ (graphψm)∩Ωn
m for some 0 ≤ m ≤ n,

then

(3.38) ‖Fm,n(x)− Fm,n(y)‖ ≥ e−Mu
n e(n−m)χ̄u‖x− y‖,

and the same bound applies to the projections to the unstable subspace.

III. For (v0, w0) ∈ Ωn
0 and (vn, wn) = F0,n(v0, w0), we have

(3.39) ‖wn − ψn(vn)‖ ≤ eMs
0−Mu

n+nχ̄s‖w0 − ψ0(v0)‖.

IV. Given ψ0, ϕ0 ∈ C0, the graph transform Gnψ0 is completely determined
by the restriction of ψ0 to Bu

0 (r̂n), where r̂n = e−nχ̄
u
eM

u
n r̄ + τ̄ , and

similarly for ϕ0. In particular, we have

(3.40) ‖ψn − ϕn‖C0 ≤ enχ̄seMs
0 (3τ̄ e−M

u
n + 2r̄e−nχ̄

u
),

V. If 1
N

∑N−1
k=0 λek ≥ χu, then there exists a set Γ ⊂ [1, N ] with #Γ ≥(

χu−χ̂u
L−χ̂u

)
N for which every n ∈ Γ has 1

n−m
∑n−1

k=m λ
e
k ≥ χ̂u for every

0 ≤ m < n, and hence statements I.–II. apply with Mu
n = 0.

Remark 3.11. Note that in V., we have Mu
n > 0 for n /∈ Γ, and so in

particular Mu
n cannot be omitted in (3.36), which deals with all n, not just

n ∈ Γ.

Remark 3.12. The statement of Theorem D simplifies somewhat if one sets
σ̄ = τ̄ = 0 and considers only admissible manifolds passing through 0 and
tangent to Eun. In this case no hypotheses on λsn are needed (note that in
the domain of Gn in (3.37), all the terms containing M s

0 vanish), and in
particular (3.36) can be omitted. This version of the result suffices to prove
Theorem A and thus is well-suited to proving existence of SRB measures.

Remark 3.13. When applying Theorem D to an infinite sequence fn, posi-
tivity of the asymptotic average of λek guarantees effective hyperbolicity in
the unstable direction, and the constants Mu

n from (3.35) control the non-
uniformity of this hyperbolicity. In principle, negativity of the asymptotic
average of λsk leads to contraction in the stable direction; we see from (3.36)

that to realise this contraction, one actually needs
∑n−1

k=0 λ
s
k to grow more

quickly than the constants Mu
n .
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4. Effectively hyperbolic diffeomorphisms of compact
manifolds

Let M be a compact Riemannian manifold, U ⊂ M an open set, and
f : U →M a C1+α diffeomorphism onto its image, where α ∈ (0, 1]. Shrink-
ing U if necessary, we can assume that f can be extended to a diffeomorphism
from a neighbourhood of U to its image. Then there is an L > 0 such that
for every x ∈ U and v, w ∈ TxM, we have

(4.1)

e−L ≤ ‖Df(x)(v)‖
‖v‖

≤ eL,

e−L ≤ sin](Df(x)(v), Df(x)(w))

sin](v, w)
≤ eL,

|Df(x)|α ≤ L.

Let X ⊂ U be a backwards f -invariant set (that is, f−1X ⊂ X). Assume
that on X, the tangent bundle has a Df -invariant splitting TxM = Eu(x)⊕
Es(x). The set X may be just a single orbit, and the splitting does not need
to be continuous. Given x ∈ X, let

θ(x) = ](Eu(x), Es(x)).

Writing

λu(x) = log ‖Df(x)|−1
Eu(x)‖

−1, λs(x) = log ‖Df(x)|Es(x)‖,

denote the defect from domination at x by ∆(x) = max
(

0, λ
s(x)−λu(x)

α

)
.

Fix θ > 0 and let

(4.2) λe(x) = min

(
λu(x)−∆(x),

1

α
log

sin θ(f(x))

sin θ(x)

)
whenever θ(f(x)) < θ, and λe(x) = λu(x)−∆(x) otherwise.

Definition 4.1. We call a diffeomorphism f effectively hyperbolic on X if
there exists θ̄ > 0 such that

(4.3) χe := inf
x∈X

lim
m→∞

1

m

m∑
k=1

λe(f−kx) > 0.

In this case for χ̂ ∈ (0, χe) we define M(x) ≥ 0 by

M(x) = sup
m≥0

m∑
k=1

(
χ̂− λe(f−kx)

)
.

Finally, let

(4.4) χs := sup
x∈X

lim
m→∞

1

m

m∑
k=1

λs(f−kx).

The following result can be viewed as an Unstable Manifold Theorem for
effectively hyperbolic diffeomorphisms.
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Theorem 4.1. Given L > 0 and 0 < χ̄ < χ̂, the following is true for every
sufficiently small r̄, θ̄, γ̄ > 0 and every sufficiently large κ̄ > 0 satisfying
κ̄r̄α ≤ γ̄. If f satisfies (4.1) and is effectively hyperbolic on X with χe > χ̂,
then we have the following conclusions.

I. For every x ∈ X, the set {n ≤ 0 | M(fnx) = 0} has positive lower
asymptotic density.

II. θ(x) ≥ θ̄e−αM(x).

III. There exists a family of submanifolds {W u(x) | x ∈ X} tangent to
Eu(x) such that f(W u(x)) ⊃ W u(f(x)), and each W u(x) is the im-
age under the exponential map expx of the graph of a C1+α function
ψx : Bu(x)(e−M(x)r̄) → Es(x) with ψx(0) = 0, Dψx(0) = 0, ‖Dψx‖ ≤
γ̄, and |Dψx|α ≤ κ̄eαM(x).

IV. Given y, z ∈W u(x), we have for all m ≥ 0

d(f−my, f−mz) ≤ eM(x)e−mχ̄d(y, z).

V. If χs < χ̄, then W u(x) is the unique family satisfying III.

VI. If χs < χ̄, and if x ∈ X, y ∈M are such that there exists C ∈ R with

d(f−my, f−mx) ≤ min(r̄e−M(x), Ce−mχ̄)

for all m ≥ 0, then y ∈W u(x).

Remark 4.2. One can obtain local stable manifolds by applying Theorem
4.1 to f−1. Note that this requires f−1 to be effectively hyperbolic on the
trajectories in question, which is a separate issue from effective hyperbolicity
of f . Note also that U is not required to be a trapping region for either f
or f−1 – all that is needed is for the entire forward (backward) trajectory
of points in X to remain in U .

As in Section 3.3, we describe some conditions that guarantee effective
hyperbolicity.

Proposition 4.3. If f : M→M is a C1+α diffeomorphism satisfying

(4.5) lim
θ→0

lim
m→∞

1

m
#{1 ≤ k ≤ m | θ(f−kx) < θ} = 0

and

χu := inf
x∈X

lim
m→∞

1

m

m∑
k=1

(
λu(f−kx)−∆(f−kx)

)
> 0(4.6)

on a backward invariant set X, then it is effectively hyperbolic on X, and
for every 0 < χ̄ < χ̂ < χu there exist γ̄, r̄, θ̄, κ̄ > 0 such that I.–IV. of
Theorem 4.1 hold. If χs < χ̄, then V.–VI. hold as well.

Theorem 4.1 may be interpreted as giving concrete estimates on the con-
stants that appear in Pesin theory, which vary according to the regular set
that a point lies in, and which control the geometric and dynamical prop-
erties of the stable and unstable manifolds. In Section 12 we discuss some



HADAMARD–PERRON THEOREMS AND EFFECTIVE HYPERBOLICITY 19

of the differences between the non-uniform hyperbolicity appearing in that
theory and the effective hyperbolicity we use here.

5. Application I: Constructing SRB measures for general
non-uniformly hyperbolic attractors

In [5], Theorem A is used as a crucial part of the proof of existence of
SRB measures under some very general conditions. We briefly describe this
result here, as Theorem 5.1 below. We note that Theorem 5.1 establishes
the existence of an SRB measure for the systems considered in [2], as well
as for some new examples [5].

As in the previous section, let M be a compact manifold, U ⊂ M an
open set, and f : U → M a C1+α diffeomorphism onto its image for some
α ∈ (0, 1]. Now we also assume that U is a trapping region – that is,

f(U) ⊂ U . This implies that (4.1) is satisfied for some L > 0 on f(U).
Suppose that there exists a forward-invariant set X ⊂ U of positive

Lebesgue measure with two measurable transverse cone familiesKs(x),Ku(x) ⊂
TxM such that

(1) Df(Ku(x)) ⊂ Ku(f(x)) for all x ∈ X;

(2) Df−1(Ks(f(x))) ⊂ Ks(x) for all x ∈ f(X).

As discussed in Remark 2.2, the cone families Ks,u can be used to obtain
an invariant splitting TxM = Eu(x) ⊕ Es(x) on X. In particular, we will
be able to apply Theorem A after verifying some further conditions.

Define λu, λs : X → R by

λu(x) = inf{log ‖Df(v)‖ | v ∈ Ku(x), ‖v‖ = 1},
λs(x) = sup{log ‖Df(v)‖ | v ∈ Ks(x), ‖v‖ = 1}.

Denote the angle between the boundaries of Ks(x) and Ku(x) by

θ(x) = inf{](v, w) | v ∈ Ku(x), w ∈ Ks(x)},
and let

δK(x) := lim
θ→0

δ{n ≥ 1 | θ(fn(x)) < θ}.

Let ∆(x) = max
(

0, λ
s(x)−λu(x)

α

)
be the defect from domination, and let

λ(x) = min (λu(x)−∆(x), −λs(x)) .

Consider the set of points

S =

{
x ∈ X | δK(x) = 0 and lim

n→∞

1

n

n−1∑
k=0

λ(fkx) > 0

}
,

so that points in S have (forward) trajectories on which f is effectively
hyperbolic and has negative Lyapunov exponents in the stable direction.

Theorem 5.1 ([5]). If LebS > 0, then f has a hyperbolic SRB measure
supported on Λ =

⋂
n≥0 f

n(U).
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Sketch of proof. The idea behind the proof of Theorem 5.1 is to construct
an invariant measure µ as a limit point of the sequence of measures

(5.1) µn :=
1

n

n−1∑
k=0

fk∗ Leb,

and then show that some ergodic component of µ is an SRB measure. Using
Theorem A, one can do this by guaranteeing that the measures µn give
uniformly positive weight to a certain compact subset of the class of “SRB–
like” measures.

To carry this out, one fixes parameters K = (θ, γ, κ, r, C, λ̄, β, L) and
considers for each N ∈ N a certain collection RK,N of admissible manifolds
with geometry and dynamics over N backwards iterates controlled uniformly
by K. Writing R′K,N for the collection of standard pairs (W,ρ) with W ∈
RK,N and ρ : W → [1/L,L] Hölder continuous with constant L, one can
associate to each standard pair (W,ρ) the measure given by integration
against ρ(x) dmW (x), where mW is leaf volume along W .

Taking weighted averages of such measures gives a collection Mac,h
K,N of

measures with some absolute continuity and hyperbolicity properties, and
it is shown in [5] that if the measures µn have uniformly large projections to

Mac,h
K,N , then some ergodic component of µ inherits the properties of absolute

continuity and hyperbolicity, hence is an SRB measure.

The key to proving that the measures µn have large projections toMac,h
K,N

is Theorem A and Proposition 3.7. Writing Sn for the set of points in S for
which n is an effective hyperbolic time and a certain contraction condition
for λs, one can put mn = 1

n

∑n−1
k=0 f

k
∗ (Leb |Sk) ≤ µn and use the bounds from

Theorem A on the graph transform at effective hyperbolic times to show that

fk∗ (Leb |Sk) ∈Mac,h
K,q and hence mn ∈Mac,h

K,q . The positive frequency of such
times guarantees that mn is bounded away from 0. �

6. Application II: A finite-information closing lemma

For uniformly hyperbolic systems, the Anosov closing lemma establishes
the existence of a periodic orbit close to any almost-periodic orbit. More
precisely, one has the following result [7, Theorem 6.4.15].6

Theorem 6.1 (Uniform closing lemma). Let Λ be a (uniformly) hyperbolic
set for a C1 diffeomorphism f . Then for every δ > 0 there is ε > 0 such
that for any x ∈ Λ and p ∈ N with d(x, fp(x)) < ε, there exists z ∈ B(x, δ)
such that z is a hyperbolic periodic point for f with period p.

A similar result holds for non-uniformly hyperbolic systems [6, §3]. A non-
uniformly hyperbolic set Λ has a filtration Λ =

⋃
K>0 ΛK , where the sets

6In fact the result in [7] is somewhat stronger and allows x, f(x), . . . , fp(x) to be an
ε-pseudo-orbit. Moreover, there is a constant C (independent of δ) such that one can take
ε = δ/C.
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ΛK are compact but non-invariant, and the parameter K may be thought
of as controlling the amount of non-uniformity in the trajectory of x ∈ ΛK ,
with larger values of K corresponding to worse non-uniformities.

Theorem 6.2 (Non-uniform closing lemma). Let Λ be a non-uniformly hy-
perbolic set for a C1+α diffeomorphism f . Then for every δ > 0 and K > 0
there is ε > 0 such that for any x ∈ ΛK and p ∈ N with fp(x) ∈ ΛK∩B(x, ε),
there exists z ∈ B(x, δ) such that z is a hyperbolic periodic point for f with
period p.

The difficulty in applying Theorem 6.2 is that determining the non-
uniformity constantK associated to some point x requires an infinite amount
of information, because K depends on the entire forward and backward tra-
jectory of x. Here we use effective hyperbolicity to give a set of criteria for
existence of a nearby hyperbolic periodic orbit that can be verified with a
finite amount of information, since they depend only on the action of f near
the points x, f(x), . . . , fp(x).

As in the previous sections, let M be a compact Riemannian manifold
and f : U →M a C1+α diffeomorphism from an open set U onto its image.
By shrinking U if necessary, we can extend f to a neighbourhood of U so
that (4.1) holds for some uniform L > 0.

Definition 6.1. We say that an orbit segment {x, f(x), . . . , fp(x)} ⊂ U

is completely effectively hyperbolic with parameters M s,Mu, M̂ s, M̂u > 0,
rates χ̂s < 0 < χ̂u, and threshold θ̄ > 0 if there are Df -invariant transverse
cone families Ks,Ku on {x, f(x), . . . , fp(x)} such that defining λu, λs, θ as
in the previous section and writing 1θ̄ for the indicator function of the set
{z | θ(z) < θ̄}, we have

(6.1) θ(x) ≥ θ̄, θ(fp(x)) ≥ θ̄,

and the quantities

Mu
n = max

0≤m<n

(
(n−m)χ̂u −

n−1∑
k=m

(λu −∆− L1θ̄)(f
kx)

)
,(6.2)

M s
n = max

n<m≤p

(
(n−m)χ̂s +

n−1∑
k=m

(λs + ∆ + L1θ̄)(f
kx)

)
(6.3)

satisfy

Mu ≥Mu
p ,(6.4)

M s ≥M s
0 .(6.5)
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Moreover, we require that

M̂u ≥M s
n −

p∑
k=n+1

(λuk − χ̂u) for all 0 < n ≤ p,(6.6)

M̂u ≥M s −
p∑

k=1

(λuk − χ̂u),(6.7)

and

M̂ s ≥Mu
n +

n−1∑
k=0

(λsk − χ̂s) for all 0 ≤ n < p,(6.8)

M̂ s ≥Mu +

p−1∑
k=0

(λsk − χ̂s).(6.9)

Remark 6.3. We stress again that Definition 6.1 only requires verifying a
finite amount of information: the cones Ks,Ku do not need to be invariant
along the entire trajectory of x, but only along p iterates of it, and no
asymptotic quantities (such as Lyapunov exponents or Lyapunov charts)
need to be computed.

We can use Theorem D to prove the following closing lemma regarding
completely effectively hyperbolic orbit segments.

Theorem 6.4. Given L,Mu,M s, M̂u, M̂ s ∈ R, χ̂s < 0 < χ̂u, and θ̄, δ > 0,
there exist ε > 0 and p0 ∈ N such that if f : U →M satisfies (4.1), then the
following is true. If x ∈ U and p ∈ N are such that

(1) p ≥ p0 and the orbit segment {x, f(x), . . . , fp(x)} ⊂ U is completely

effectively hyperbolic with parameters M s,Mu, M̂ s, M̂u, rates χ̂s, χ̂u,
and threshold θ̄;

(2) d(x, fpx) < ε, and there exist maximal-dimensional subspaces Eu ⊂
Ku(x), Es ⊂ Ks(x) such that d(Dfp(Eσ), Eσ) < ε for σ = s, u,

then there exists a hyperbolic periodic point z = fpz such that d(x, z) < δ.

Moreover, writing Ês, Êu for the stable and unstable subspaces of Dfp(z),

we have d(Êσ, Eσ) < δ for σ = s, u.

We give a brief sketch of the argument – a more detailed proof is in
Section 10. Let W u,W s be u- and s-admissible manifolds through x, re-
spectively. For an appropriate choice of r > 0, the hypotheses are enough to
guarantee that fnp(W u)∩B(x, r) converges to a u-admissible manifold near
x as n→∞, and similarly, fnp(W s) ∩B(x, r) converges to an s-admissible
manifold near x as n→ −∞. The intersection of these limiting manifolds is
the desired periodic point.
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7. General results on admissible manifolds

We begin the proofs by formulating and proving our most general result,
which is Theorem 7.1, a very broad version of the Hadamard–Perron the-
orem that gives detailed bounds on the dynamics of the graph transform
operator (central to Hadamard’s method). This result applies even to fi-
nite sequences of C1 diffeomorphisms and gives bounds on the images of
admissible manifolds.

In Theorem 8.1, we use Theorem 7.1 to prove the existence of local un-
stable manifolds (not just admissible manifolds) for a sequence of C1 diffeo-
morphisms {fn | n ≤ 0}. In particular, this implies the classical Hadamard–
Perron theorems (Theorems 11.1 and 11.3), which give existence of local
unstable manifolds in the uniformly and non-uniformly hyperbolic settings.
As with the classical results, we also obtain the existence of local strong un-
stable manifolds corresponding to the directions with the fastest expansion,
which are important in various settings including partial hyperbolicity and
maps with dominated splittings. Applying the same result to the inverse
maps f−1

n gives the local stable manifolds.

7.1. Admissible manifolds: control of the graph transform. Given

ψn : Eun → Esn, a continuous non-decreasing function Zψn : R+ → R+ with

Zψn (0) = 0 is a modulus of continuity for Dψn if

(7.1) ‖Dψn(v1)−Dψn(v2)‖ ≤ Zψn (t) whenever ‖v1 − v2‖ ≤ t.

Given a sequence of such functions Zψn , we generalise (2.6) to the following
collection of admissible manifolds:

(7.2)

C′n = C′n(rn, τn, σn, γn, Z
ψ
n )

=
{
ψ : Bu

n(rn)→ Esn | ψ is C1, ‖ψ(0)‖ ≤ τn, ‖Dψ(0)‖ ≤ σn,

‖Dψ‖ ≤ γn, and Zψn is a modulus of continuity for Dψn

}
.

Note that setting Zψn (t) = κnt
α and taking γn ≥ σn + κnr

α
n recovers the

earlier definition of Cn.
Consider a sequence of C1 maps {fn | 0 ≤ n < N}: replace (C1) with

(C1′) fn : Ωn → Vn+1 is a C1 diffeomorphism onto its image, and fn(0) =
0.

Similarly, replace (C3) with

(C3′) The numbers λun, λ
s
n, θn satisfy (2.1)–(2.3), and Zfn : R+ → R+ is a

modulus of continuity for Dfn.

For brevity, we say that the maps {fn | 0 ≤ n < N} satisfy (C′) whenever
they satisfy (C1′), (C2), (C3′), (C4), and (C5), and we write

(7.3) Ẑfn(t) = Zfn(t)(sin θn+1)−1.
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In order to control the behaviour of the graph transform in terms of
λu,sn , θn, we introduce a number of quantities that can be made arbitrarily
small by an appropriate choice of τn, rn, σn, γn in the definition of Cn.

First note that if ψ ∈ C′n and x ∈ graphψ, then

(7.4) ‖x‖ ≤ τn + rn(1 + γn).

Suppose τn, γn, rn are small enough so that

(7.5) εfn := Ẑfn(τn + rn(1 + γn)) < eλ
u
n(1 + γn)−1.

Define χn < λ̂un < λun and λ̌sn, λ̂
s
n > λsn by

eλ̂
u
n = eλ

u
n − εun, εun = (1 + γn)εfn,(7.6)

eλ̂
s
n = eλ

s
n + εsn, εsn = max{1 + γ−1

n , 1 + γn+1} · εfn,(7.7)

χn = λ̂un + εχn, εχn = log max

(
1− γn+1

1 + γn
,

sin θn+1

1 + γn

)
,(7.8)

eλ̌
s
n = eλ

s
n + ε̌n, ε̌n = (1 + eλ

s
n−λ̂unγn)εfn + (1 + γn)e−λ̂

u
n(εfn)2.(7.9)

Let

(7.10) ρn(t) = e−λ̂
u
n(1 + eλ

s
n−λ̂unγn)Ẑfn(t) + e−2λ̂unẐfn(t)2

and suppose that the moduli of continuity Zψn satisfy

(7.11) Zψn+1(teλ̂
u
n) ≥ eλsn−λ̂unZψn (t) + ρn(t).

Finally, write

εσn = eλ
s
n−λ̂unZψn

(
e−λ̂

u
nεfnτn

)
+ e−λ̂

u
n(1 + γn)Ẑfn

(
(1 + e−λ̂

u
nεfn(1 + γn))τn

)
and note that εσn = 0 if τn = 0, that is, if we consider admissible manifolds
passing through 0, not just near it. We will require the following recursive
bounds on the parameters:

rn+1 ≤ eλ̂
u
nrn − εfnτn,(7.12)

τn+1 ≥ eλ̌
s
nτn,(7.13)

σn+1 ≥ eλ
s
n−λ̂unσn + εσn,(7.14)

γn+1 ≥ min
(
eλ̂

s
n−λ̂unγn, σn+1 + Zψn+1(rn+1)

)
.(7.15)

Theorem 7.1. If the sequence of maps {fn | 0 ≤ n < N} satisfies (C′) and
(7.5)–(7.15) hold, then the following are true.

I. The graph transform Gn : C′n → C′n+1 is well-defined for every 0 ≤ n <
N .

II. Given ψ0 ∈ C′0, the C1 functions ψn = Gnψ0 : Bu
n(rn) → Esn have the

following property: if x, y ∈ (graphψm)∩Ωn
m for some 0 ≤ m ≤ n, then

(7.16) ‖Fm,n(x)− Fm,n(y)‖ ≥ exp (χm + · · ·+ χn−1) ‖x− y‖.
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III. Fix (v0, w0) ∈ Ωn
0 and let (vn, wn) = F0,n(v0, w0). Then

(7.17) ‖wn − ψn(vn)‖ ≤ e
∑n−1
k=0 λ̌

s
k‖w0 − ψ0(v0)‖,

and if (v′n, w
′
n) is another trajectory such that

‖w′0 − w0‖ ≤ γ0‖v′0 − v0‖,
then

(7.18) ‖w′n − wn‖ ≤ γn‖v′n − vn‖
for all 0 ≤ n < N . Moreover, we have

(7.19) ‖vn − v′n‖ ≥ e
∑n−1
k=0 λ̂

u
k‖v0 − v′0‖.

IV. Define r
(k)
n for 0 ≤ k ≤ n by r

(n)
n = rn and r

(k)
n = e−λ̂

u
k (r

(k+1)
n + εfkτk).

Then given ψ0, ϕ0 ∈ C′0 and writing r̂n = r
(0)
n , we have,

(7.20) ‖ψn − ϕn‖C0 ≤ exp
(
λ̌s0 + λ̌s1 + · · ·+ λ̌sn−1

) ∥∥∥(ψ0 − ϕ0)|Bu0 (r̂n)

∥∥∥
C0
.

Remark 7.2. Theorem 7.1 is valid even without any assumptions on the
existence of genuine contraction or expansion in Esn and Eun, or any domi-
nation. It gives information on admissible manifolds based on information
from the tangent space, without any requirement of uniform or non-uniform
hyperbolicity.

7.2. Preliminaries for the proof. As usual, we use coordinates on Ωn ⊂
Rd given by the decomposition Rd = Eun ⊕ Esn. Thus given v ∈ Eun and
w ∈ Esn, we write (v, w) = v + w ∈ Rd. We let ∂1 denote the partial
derivative with respect to v, and ∂2 the partial derivative with respect to w.

Consider the error function sn : Ωn → Rd given by sn = fn − Dfn(0);

then ∂isn has Zfn as a modulus of continuity. Writing An = Df(0)|Eun and
Bn = Df(0)|Esn , we see that Dfn(0) takes the diagonal form

(v, w) 7→ (Anv,Bnw).

Similarly, we write

(7.21) sn(v, w) = (gn(v, w), hn(v, w)).

We want to use Zfn to describe a modulus of continuity for Dgn and Dhn;
here the angle θn between Eun and Esn becomes important. Indeed, it is easy
to see that if a, b, c are sides of a triangle and θ is the angle between a and
b, then c ≥ a sin θ (and also c ≥ b sin θ). Given x, y ∈ Rd, we apply this with
a = ∂ign(x) − ∂ign(y), b = ∂ihn(x) − ∂ihn(y), c = ∂isn(x) − ∂isn(y), and
θ = θn+1 to obtain

‖∂ign(x)− ∂ign(y)‖ ≤ ‖∂isn(x)− ∂isn(y)‖(sin θn+1)−1

≤ Zfn(‖x− y‖)(sin θn+1)−1 = Ẑfn(‖x− y‖),

and similarly for ∂ihn (see (7.3) for the last step). This shows that Ẑfn
is a modulus of continuity for both ∂ign and ∂ihn. In particular, we see
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from (7.4) and (7.5) that both gn and hn are Lipschitz with constant εfn, so
that

(7.22)
‖gn(x)− gn(y)‖ ≤ εfn‖x− y‖, ‖gn(x)‖ ≤ εfn‖x‖,

‖hn(x)− hn(y)‖ ≤ εfn‖x− y‖, ‖hn(x)‖ ≤ εfn‖x‖

for every x, y ∈ Ωn, where the second inequality on both lines uses the fact
that gn(0) = hn(0) = 0.

7.3. Defining the graph transform. Given ψn ∈ C′n, we use the coordi-
nates provided by Eun+1 and Esn+1 to investigate the manifold fn(graphψn).

Our initial goal is to show that fn(graphψn∩Ωn+1
n ) is the graph of a function

ψn+1 : Bu
n+1(rn+1)→ Esn+1.

To this end, to every v ∈ Bu
n(rn) we associate v̄ ∈ Eun+1 and ψ̄ ∈ Esn+1

such that

(7.23) (v̄, ψ̄) = fn(v, ψ(v)) = (Anv + gn(v, ψ(v)), Bnψ(v) + hn(v, ψ(v))).

We must show that the image of the map v 7→ v̄ contains the set Bu
n+1(rn+1)

and that the inverse map v̄ 7→ v can be properly defined here; then we
can compose this inverse map with the map v 7→ ψ̄ to obtain the desired
map v̄ 7→ ψn+1(v̄) = ψ̄(v(v̄)). Then we will show that the new map has
‖ψ̄(0)‖ ≤ τn+1.

Finally, after computing ∂v̄
∂v and ∂ψ̄

∂v , we must use these to show that

‖Dψn+1(0)‖ ≤ σn+1, that ‖Dψn+1‖ ≤ γn+1, and that Zψn+1 is a modulus of
continuity for Dψn+1.

From now on, to simplify notation, we write gn(v) = gn(v, ψn(v)) and
hn(v) = hn(v, ψn(v)). We also drop the explicit dependence on n for the
maps A,B, g, h, ψ, whenever it does not cause confusion. (We will retain
the subscript for the various parameters.) Then (7.23) may be rewritten as
the following pair of equations:

v̄ = Av + g(v),(7.24)

ψ̄ = Bψ(v) + h(v).(7.25)

Using the fact that Ẑfn is a modulus of continuity for ∂ign, together with the
estimates ‖Dψ(v)‖ ≤ γn and ‖ψ(v)‖ ≤ τn + γn‖v‖, we see that

(7.26)

‖Dg(v)‖ = ‖∂1gn(v, ψ(v)) + ∂2gn(v, ψ(v)) ◦Dψ(v)‖

≤ (1 + γn)Ẑfn(‖(v, ψ(v))‖)

≤ (1 + γn)Ẑfn(τn + (1 + γn)rn) = (1 + γn)εfn,

and similarly,

(7.27) ‖Dh(v)‖ ≤ (1 + γn)εfn.

In particular, we see from (7.6) that

(7.28) ‖(A+Dg(v))−1‖−1 ≥ eλun − (1 + γn)εfn = eλ̂
u
n .
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If follows that given v1, v2 ∈ Bu
n(rn), we have

(7.29) ‖v̄1 − v̄2‖ ≥ eλ̂
u
n‖v1 − v2‖.

In particular, the map v 7→ v̄ is one-to-one onBu
n(rn). Using (7.24) and (7.22),

we have ‖v̄‖ = ‖gn(0, ψ(v))‖ ≤ τnε
f
n when v = 0, and it follows from (7.12)

and (7.28) that the image ofBu
n(rn) under the map v 7→ v̄ containsBu

n+1(rn+1).

In particular, (7.24) and (7.25) determine a well-defined function ψ̄ : Bu
n+1(rn+1)→

Esn+1.

To compute ψ̄(0), we let v1 = 0 and take v2 to be such that v̄2 = 0.

Then (7.22) gives ‖v̄1‖ ≤ εfnτn, whence we use (7.29) to deduce that

(7.30) ‖v2‖ ≤ e−λ̂
u
n‖v̄1‖ ≤ e−λ̂

u
nεfnτn.

Together with (7.25) and (7.13), this implies that

‖ψ̄(0)‖ ≤ eλsn‖ψ(v2)‖+ ‖h(v2)‖

≤ eλsn(τn + γn‖v2‖) + εfn‖v2‖

≤
(
eλ

s
n + γnε

f
ne
λsn−λ̂un + (εfn)2e−λ̂

u
n

)
τn ≤ τn+1.

7.4. Regularity properties of ψn+1. We now estimate the regularity prop-
erties of the map ψ̄. Differentiating (7.24) and (7.25) gives

dv̄

dv
= A+Dg(v),

dψ̄

dv
= B ◦Dψ(v) +Dh(v).

Write Â(v) = dv̄
dv = A+Dg(v); we saw in (7.28) that ‖Â(v)−1‖−1 ≥ eλ̂un for

every v ∈ Bu
n(rn). Now using the chain rule, we conclude that

(7.31)
Dψ̄(v̄) = (B ◦Dψ(v) +Dh(v)) ◦ (A+Dg(v))−1,

= (B ◦Dψ(v) +Dh(v)) ◦ Â(v)−1.

Recalling that log ‖B‖ ≤ λsn and ‖Dψ(v)‖ ≤ γn, we let v be such that v̄ = 0,
and use (7.30), (7.26), and (7.31) to estimate ‖Dψ̄(0)‖:

‖Dψ̄(0)‖ ≤ ‖Â(v)−1‖(‖B‖‖Dψ(v)‖+ ‖Dh(v)‖)

≤ e−λ̂un
(
eλ

s
n

(
σn + Zψn

(
eλ̂

u
nεfnτn

))
+ (1 + γn)Ẑfn

(
τn + (1 + γn)e−λ̂

u
nεfnτn

))
.

Recalling the definition of εσn before Theorem 7.1, this shows that ‖Dψ̄(0)‖ ≤
σn+1 as long as σn+1 satisfies (7.14).

Now we use (7.27), (7.28), and (7.31) to estimate ‖Dψ̄‖, requiring only
that ‖v‖ ≤ rn:

‖Dψ̄(v̄)‖ ≤
(
eλ

s
nγn + (1 + γn)εfn

)
e−λ̂

u
n ≤ eλ̂sn−λ̂unγn,
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where the last step uses (7.7).
Observe that (7.15) may be satisfied in one of two ways: either we have

γn+1 ≥ eλ̂
s
n−λ̂unγn, or we have γn+1 ≥ σn+1 + Zψn+1(rn+1). In the first case,

the inequality ‖Dψn+1‖ ≤ γn+1 follows from the argument above. In the

second case, this inequality follows from the fact that Zψn+1 is a modulus of
continuity for Dψn+1, which we now prove.

Remark 7.3. We will need to use the second case in the proof of Theorem C.

To show that Zψn+1 is a modulus of continuity forDψn+1, we must estimate

the quantities ‖Dψ̄(v̄1)−Dψ̄(v̄2)‖ and ‖v̄1 − v̄2‖. First we observe that

(7.32) Dψ̄(v̄1)−Dψ̄(v̄2) = (B ◦Dψ(v1) +Dh(v1)) ◦ Â(v1)−1

− (B ◦Dψ(v2) +Dh(v2)) ◦ Â(v2)−1.

Furthermore, it follows from the definition of Â(v) that

Â(v1) = Â(v2) +Dg(v1)−Dg(v2);

composing on the left by Â(v2)−1 and on the right by Â(v1)−1 yields

Â(v2)−1 = Â(v1)−1 + Â(v2)−1 ◦ (Dg(v1)−Dg(v2)) ◦ Â(v1)−1.

Using this in (7.32) gives

Dψ̄(v̄1)−Dψ̄(v̄2) =
(
B ◦ (Dψ(v1)−Dψ(v2)) + (Dh(v1))−Dh(v2))

+ (B ◦Dψ(v2) +Dh(v2)) ◦ Â(v2)−1 ◦ (Dg(v1)−Dg(v2))
)
◦ Â(v1)−1.

Writing t = ‖v1 − v2‖, this leads to the following estimate:

(7.33)

‖Dψ̄(v̄1)−Dψ̄(v̄2)‖ ≤
(
‖B‖Zψn (t) + Ẑfn(t)

+ (‖B‖‖Dψ‖+ ‖Dh‖) · ‖Â(v1)−1‖ · Ẑfn(t)
)
‖Â(v2)−1‖

≤
(
eλ

s
nZψn (t) + Ẑfn(t) + (eλ

s
nγn + Ẑfn(t))e−λ̂

u
nẐfn(t)

)
e−λ̂

u
n .

Now (7.28), (7.33), and (7.11) show that Zψn+1 is a modulus of continuity
for Dψn+1.

It follows from the definition of ψ that graphψn+1 = fn(graphψn∩Ωn+1
n ),

and thus induction shows that graphψn = F0,n(graphψ0 ∩ Ωn
0 ) for all n,

which completes the proof of I.

7.5. Dynamics of fn : graphψn → graphψn+1. To prove II., we must
establish (7.16) by estimating the expansion of the map fn from graphψn
to graphψn+1. In particular, we must show that given x, y ∈ graph(ψn) ∩
f−1
n graph(ψn+1), we have

(7.34) ‖fn(x)− fn(y)‖ ≥ eχn‖x− y‖.
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Using the definition of χn in (7.8), this is equivalent to proving both of the
following inequalities:

‖fn(x)− fn(y)‖ ≥ 1− γn+1

1 + γn
eλ̂

u
n‖x− y‖,(7.35)

‖fn(x)− fn(y)‖ ≥ sin θn+1

1 + γn
eλ̂

u
n‖x− y‖.(7.36)

Now suppose v1, v2 ∈ Bu
n(rn) are such that v̄1, v̄2 lie in Bu

n+1(rn+1). To
prove (7.35), we use the estimate

‖ψ̄(v̄1)− ψ̄(v̄2)‖ ≤ γn+1‖v̄1 − v̄2‖

and observe that

‖(v̄1, ψ̄(v̄1))− (v̄2, ψ̄(v̄2))‖ = ‖(v̄1 − v̄2, ψ̄(v̄1)− ψ̄(v̄2))‖
≥ (1− γn+1)‖v̄1 − v̄2‖

≥ (1− γn+1)eλ̂
u
n‖v1 − v2‖

≥ 1− γn+1

1 + γn
eλ̂

u
n‖(v1, ψ(v1))− (v2, ψ(v2))‖.

For (7.36), we use the triangle estimates discussed following (7.21) and ob-
tain

‖(v̄1, ψ̄(v̄1))− (v̄2, ψ̄(v̄2))‖ = ‖(v̄1 − v̄2, ψ̄(v̄1))− ψ̄(v̄2))‖
≥ sin θn+1‖v̄1 − v̄2‖

≥ sin θn+1e
λ̂un‖v1 − v2‖

≥ sin θn+1

1 + γn
eλ̂

u
n‖(v1, ψ(v1))− (v2, ψ(v2))‖.

Together these establish (7.34), and (7.16) follows by induction, completing
the proof of II.

7.6. Contraction properties of the graph transform. First we ob-
serve that part IV. of the theorem follows from part III. Indeed, it follows
from (7.28) and the remarks after (7.29) that to compare ϕn, ψn on Bu(rn),
it suffices to compare ϕ0, ψ0 on Bu(r̂n), and then (7.17) establishes the rest
of IV.

For part III., we see that (7.19) comes from exacly the same argument
as (7.29), where we need only replace the function ψ from that argument
by another function in C′n whose graph contains both (vn, wn) and (v′n, w

′
n)

– this is possible by (7.18).
Thus it only remains to prove (7.17). To this end, write (v1, w1) = (vn, wn)

and (v̂1, ŵ1) = (vn+1, wn+1). Let (v1, ψ1) be the point on graphψ with
the same u-coordinate as (v1, w1), and let (v̄2, ψ̄2) be the point on graph ψ̄
with the same u-coordinate as (v̂1, ŵ1), so that v̄2 = v̂1. Let (v2, ψ2) =
f−1
n (v̄2, ψ̄2).
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Now we have

(7.37)

v̄1 = Anv1 + gn(v1, ψ1), ψ̄1 = Bnψ1 + hn(v1, ψ1),

v̄2 = Anv2 + gn(v2, ψ2), ψ̄2 = Bnψ2 + hn(v2, ψ2),

v̂1 = Anv1 + gn(v1, w1), ŵ1 = Bnw1 + hn(v1, w1).

We must estimate ‖ŵ1− ψ̄2‖ in terms of ‖w1−ψ1‖. Using (7.22) and (7.37),
we have

(7.38) ‖ŵ1 − ψ̄2‖ ≤ eλ
s
n‖w1 − ψ2‖+ εfn(‖v1 − v2‖+ ‖w1 − ψ2‖).

Furthermore, we have ‖w1 − ψ2‖ ≤ ‖w1 − ψ1‖ + ‖ψ1 − ψ2‖, and we can
use (7.29), (7.22), and (7.37) to obtain

‖v1 − v2‖ ≤ e−λ̂
u
n‖v̄1 − v̂1‖ ≤ e−λ̂

u
nεfn‖w1 − ψ1‖.

Together with (7.38) and the hypothesis on ‖Dψn‖, this yields

‖ŵ1 − ψ̄2‖ ≤ (eλ
s
n + εfn)(‖w1 − ψ1‖+ ‖ψ1 − ψ2‖) + εfn‖v1 − v2‖

≤ (eλ
s
n + εfn)(1 + γne

−λ̂unεfn)‖w1 − ψ1‖+ e−λ̂
u
n(εfn)2‖w1 − ψ1‖

=
(
eλ

s
n + (1 + γne

λsn−λ̂un)εfn + (1 + γn)e−λ̂
u
n(εfn)2

)
‖w1 − ψ1‖

= eλ̌
s
n‖w1 − ψ1‖,

where the last equality uses the definition in (7.9). This completes the proof
of III.

8. General results on unstable manifolds

Now we consider a sequence {fn | n ≤ 0} of C1 maps and produce unstable
manifolds by applying Theorem 7.1 to the finite sequences {fk | n ≤ k < 0}.7

The theorem below relies on having a sequence Zψn of moduli of continuity
satisfying (7.11): for now we assume that such a sequence has already been

found, and in Proposition 8.2 below we give conditions on Ẑfn , λ̂un, λ̂
s
n, γn that

guarantee the existence of such Zψn .

Theorem 8.1. Let {fn | n ≤ 0} satisfy (C′) and suppose rn, γn, Z
ψ
n are

such that (7.5)–(7.15) hold with σn = τn = 0. Then the following are true.

I. Writing C′n = C′n(rn, 0, 0, γn, Z
ψ
n ), there exists ψn ∈ C′n such that Gnψn =

ψn+1 for all n < 0.

II. If x, y ∈ (graphψm) ∩ Ωn
m for some n > m, then

(8.1) ‖Fm,n(x)− Fm,n(y)‖ ≥ exp (χm + · · ·+ χn−1) ‖x− y‖.

7We could consider {fn | n ≥ 0} and obtain results on stable manifolds instead of
unstable manifolds, but the notation and bounds laid out in Section 7.1 are more suited
to describing unstable manifolds for a sequence {fn | n ≤ 0}.
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III. If we have

(8.2) lim
n→−∞

log γn +
∑

n≤k<0

(
λ̌sk − λ̂uk

)
= −∞,

then ψn is the unique member of C′n satisfying I.

IV. If x ∈ Ωn is such that xm := F−1
m,n(xn) ∈ Ωm for every m ≤ n and

(8.3) lim
m→−∞

(1 + γm)‖xm‖ exp

(
−

n−1∑
k=m

λ̌sk

)
= 0,

then x ∈ graphψn.

V. If γm is bounded above and λk is a sequence such that λk ≥ λ̌sk + t(λ̂uk −
λ̌sk) for some fixed t (independent of k), and if x is such that there exists
C with

(8.4) ‖xm‖ ≤ C exp

(
−

n−1∑
k=m

λk

)
for every m, then (8.3) holds and x ∈ graphψn.

Proof. Theorem 7.1 shows that the graph transform Gn : C′n → C′n+1 is well-
defined for all n < 0. To show existence of the family ψn, we define for each
k < 0 a family Ψk = (ψkn)n<0 ∈

∏
n<0 C′n by

(8.5) ψkn =

{
0 n ≤ k,
Gn−1ψ

k
n−1 n > k,

where 0 is the zero function. By the Arzela–Ascoli theorem, C′n is C1-
compact because {Dψ | ψ ∈ C′n} is an equicontinuous and bounded family
of functions. Thus by Tychonoff’s theorem,

∏
n<0 C′n is compact in the

product topology. In particular, there exists kj → −∞ such that Ψkj →
Ψ = (ψn)n<0 ∈

∏
C′n, and this sequence ψn ∈ C′n satisfies Gnψn = ψn+1 by

the second part of (8.5). This proves Part I.
Part II. follows directly from Part II. of Theorem 7.1. To prove the

claim of uniqueness in Part III., we again consider the sequence Ψk defined

in (8.5) and estimate ‖ψjn − ψkn‖ using Part IV. of Theorem 7.1. Note that

because τ` = 0 for all `, we have r
(`)
n = exp(−

∑n−1
i=` λ̂

u
i ). Now take m < n

to be large negative and j, k ≥ m; then (7.20) gives

‖ψjn − ψkn‖C0 ≤ exp

(
n−1∑
i=m

λ̌si

)∥∥∥(ψjm − ψkm)|
Bum(r

(m)
n )

∥∥∥
≤ 2γn−m exp

(
n−1∑

i=n−m
λ̌si − λ̂ui

)
.

Together with (8.2), this implies that the sequence {ψn−in | i ∈ N} is
Cauchy in the uniform metric, and hence there exists a continuous function
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ψn : Bu
n(rn) → Esn such that limk→−∞ ψ

k
n = ψn. In particular, once (8.2)

holds there is no need to pass to a subsequence kj to obtain convergence.
To prove Part IV., we apply (7.17) to the sequence of points xm. For

every m ≤ n, we get

(8.6) ‖wn − ψn(vn)‖ ≤ exp

(
−

n−1∑
k=m

λ̌sk

)
‖wm − ψm(vm)‖.

Using the fact that ‖wm − ψm(vm)‖ ≤ (1 + γm)‖xm‖ together with (8.3),
the right hand side of (8.6) becomes arbitrarily small as m → −∞, and it
follows that xs = ψn(xu), or in other words, x ∈ graphψn.

For Part V., it suffices to observe that (8.2) and (8.4) imply (8.3) when
γm is bounded above. �

Proposition 8.2. Given (7.6)–(7.15), suppose that the sum

(8.7) Zψn (t) =
∑
k<n

exp

−λ̂uk +
∑
k<j<n

(λsj − λ̂uj )


·
(

1 + eλ̂
s
k−λ̂

u
kγk

)
Ẑfk

t exp

− ∑
k≤j<n

λ̂uj


converges when n = 0 for all t ∈ (0, r0), and that limt→0 Z

ψ
0 (t) = 0. Then

Zψn is a sequence of moduli of continuity satisfying (7.11).

Proof. It follows from (8.7) that for all n < 0, we have(
eλ

s
nZψn (t) + (1 + eλ̂

s
n−λ̂unγn)Ẑfn(t)

)
e−λ̂

u
n

= eλ
s
n−λ̂un

∑
k<n

e−λ̂
u
k+

∑
k<j<n(λsj−λ̂uj )

(
1 + eλ̂

s
k−λ̂

u
kγk

)
Ẑfk

(
te−

∑
k≤j<n λ̂

u
j

)
+ e−λ̂

u
n(1 + eλ̂

s
n−λ̂unγn)Ẑfn(t)

=
∑
k≤n

e−λ̂
u
k+

∑
k<j≤n(λsj−λ̂uj )

(
1 + eλ̂

s
k−λ̂

u
kγk

)
Ẑfk

(
teλ̂

u
ne−

∑
k≤j≤n λ̂

u
j

)
= Zψn+1(teλ̂

u
n).

This shows that (7.11) holds, and solving for Zψn shows that it is a legitimate
modulus of continuity function for each n. �

9. Proof of results in Section 3

9.1. Proof of Theorem C. We now prove Theorem C using Theorem 7.1.
We begin by estimating the quantities in (7.5)–(7.10) using (3.19)–(3.27) and
then showing that for any δ and L, we can choose ξ and γ̄ such that (7.11)–
(7.15) are satisfied.
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Using (7.5), (3.25), and (3.23), we have (taking γ̄ ≤ 1)

(9.1) εfn = βn(τn + rn(1 + γ̄))α ≤ βnrαn(2 + γ̄) ≤ 3ξ.

Together with (7.6) this gives εun ≤ 6ξ. Fix ζ > 0 such that (2 + α)ζ < δ.
By the assumption that λun ≥ −L, we can choose ξ sufficiently small that

(9.2) eλ̂
u
n = eλ

u
n − εun ≥ eλ

u
n − 6ξ ≥ eλun−ζ .

Let L1 = eL+ζ , so that for all n we have

(9.3) e−λ̂
u
n ≤ L1 and eλ

s
n−λ̂un ≤ L1.

Now choose γ̄ sufficiently small so that in (7.8) we have

(9.4) χn ≥ λun + log

(
1− γ̄
1 + γ̄

)
≥ λun − 2ζ.

From (7.9), (9.1), and (9.3), we have

ε̂n ≤ (1 + L1γ̄)(3ξ) + (1 + γ̄)L1(3ξ)2,

and so, using the fact that λsn ≥ −L and decreasing ξ if necessary, (7.9)
gives

(9.5) λ̌sn ≥ λsn − ζ.

Turning to (7.10) and (7.11), we see from (9.3), (3.23), and (3.24) that

ρn(t) ≤ L1(1 + L1γ̄)βnt
α + L2

1β
2
nt

2α

≤
(
L1(1 + L1γ̄)ξκn + L2

1ξ
)
tα

for every t ∈ [0, rn]. We use this to prove (7.11). Indeed, for the moduli of

continuity Zψn (t) = κnt
α, the quantity on the right side of (7.11) is

(9.6)
eλ

s
n−λ̂unZψn (t) + ρn(t) ≤

((
eλ

s
n−λ̂un + L1(1 + L1γ̄)ξ

)
κn + L2

1ξ
)
tα

≤
(
eλ

s
n−λun+ζ + L1(1 + L1γ̄)ξ + L2

1ξ
2
)
κnt

α,

where the second inequality uses the fact that 1 ≤ ξκn (from (3.24) and the
fact that βn ≥ 1). Using the fact that λsn − λun ≥ −L and decreasing ξ if
necessary, the last quantity is at most ≤ eλsn−λun+2ζκnt

α.
Using the inequality (2 +α)ζ ≤ δ and multiplying both sides of (3.22) by

eα(λun−ζ) gives

eα(λun−ζ)κn+1 ≥ eλ
s
n−λun+2ζκn

and so the quantities in (9.6) are bounded above by

eα(λun−ζ)κn+1t
α ≤ eαλ̂unκn+1t

α = Zψn+1(teλ̂
u
n),

where the first inequality uses (9.2). This establishes (7.11).
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The last estimate we need before verifying the remaining hypotheses of
Theorem 7.1 in (7.12)–(7.15) is an estimate on εσn: the first inequality below
uses (9.3), and the second uses (9.1), (3.26), and (3.24).

(9.7)

εσn ≤ L1κne
−αλ̂un(εfn)αταn + L1(1 + γ̄)βnτ

α
n (1 + L1(εfn)(1 + γ̄))α

≤ L1+α
1 (3ξ)ασn + L1(1 + γ̄)ξσn(1 + L1(3ξ)(1 + γ̄))α

≤ L2ξ
ασn.

Now we can verify the conditions. To verify (7.12), we estimate the right-
hand side using (9.2), (9.1), (3.25), and (3.19):

eλ̂
u
nrn − εfnτn ≥ (eλ

u
n−ζ − 3ξ)rn ≥ eλ

u
n−δrn ≥ rn+1,

where again we decrease ξ if necessary. The condition (7.13) follows imme-
diately from (3.20) and (9.5). For (7.14), we use (9.2), (9.7), and (3.21) to
obtain

eλ
s
n−λ̂unσn + εσn ≤ (eλ

s
n−λun+ζ + L2ξ

α)σn ≤ eλ
s
n−λun+δσn ≤ σn+1,

where as always we decrease ξ if necessary. (Note that this is only done
finitely many times.) Finally, (7.15) follows directly from (3.27). Thus we
can apply Theorem 7.1 to obtain well-definedness of the graph transform.
We get (3.29) from (7.16) and (9.4). The inequalities (3.30) and (3.31) come
from (7.17) and (7.19), and (3.33) follows from (7.20) and (9.5).

9.2. Proof of Theorem D. Let δ = min(χ̂u − χ̄u, χ̄s − χ̂s) > 0, and let
ξ, γ̄ > 0 be given by Theorem C. Let r̄ > 0, σ̄, τ̄ ≥ 0 be small enough and
κ̄ be large enough so that

(9.8) eL
′
β̄r̄α ≤ ξ, eL

′
β̄ ≤ ξκ̄, τ̄ ≤ r̄, κ̄τ̄α ≤ σ̄, σ̄ + κ̄r̄α ≤ γ̄.

Now let κ̄ ≤ κ̂ ≤ κ̄eαNχ̄u be such that (9.8) holds with κ̄ replaced by κ̂. We
will work with κ̂ from now on.

Define cn > 0 by c0 = 1 and cn+1 = min(eλ
e
n−δ′cn, 1), where δ′ = δ

2α . We

claim that cn ≥ e−M
u
n for all n. Indeed, if m ∈ [0, n] is maximal such that

cm = 1, then (3.35) yields cn = e
∑n−1
k=m(λek−δ) ≥ e(n−m)χ̄u−Mu

n ≥ e−Mu
n .

Similarly, define ĉn > 0 by ĉ0 = e−Nχ̄
u

and the same recursion ĉn+1 =
min(eλ

e
n−δ′ ĉn, 1). If ĉm < 1 for all 0 ≤ m ≤ n, then we have

ĉn = e
∑n−1
k=0 (λek−δ)ĉ0 ≥ enχ̄

u−Mu
n e−Nχ̄

u
,

whereas if ĉm = 1 for some m then we have ĉn = cn ≥ e−M
u
n for every

n ≥ m. In particular we observe that ĉN ≥ e−M
u
N .

Now let rn = r̄cn and κn = κ̄ĉ−αn , so that in particular κ0 = κ̂. We observe
that κn ≤ κ̂c−αn . Using the fact that λen ≤ λun and αλen ≤ (1 +α)λun−λsn, we
see that the recursive relations (3.19) and (3.22) are satisfied.

Let τn and σn be given by

(9.9)
τn := τ̄ e−M

s
0 e

∑n−1
k=0 (λsk+δ′),

σn := κ̂c−αn ταn .
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Then (3.20) is satisfied immediately. To show (3.21), we observe that by the
definitions of cn and τn, we have

σn+1

σn
=
c−αn+1τ

α
n+1

c−αn ταn
≥ e−α(λen−δ′)eα(λsn+δ′) = eα(λsn−λen)+δ,

using the relation δ = 2αδ′. Thus to prove (3.21) it suffices to show that
α(λsn−λen) ≥ λsn−λun. If the right hand side is positive (there is a deficiency
from domination), then by the definition of λen we have λen ≤ λun+ 1

α(λun−λsn),
and so

α(λsn − λen) ≥ (1 + α)(λsn − λun) ≥ λsn − λun.

On the other hand, if λsn ≤ λun, then λen ≤ λun and so

α(λsn − λen) ≥ α(λsn − λun) ≥ λsn − λun.

This shows that (3.21) holds.
We have the following estimates on τn and σn:

τn ≤ τ̄ e−M
u
n enχ̄

s
,(9.10)

σn ≤ κ̂eαM
u
n τ̄αe−αM

s
0 eα

∑n−1
k=0 (λsk+δ) ≤ σ̄eαnχ̄s .(9.11)

To verify the bounds (3.23)–(3.27), we first observe that βn ≤ β̄c−αn+1. To

see this, let m ∈ [0, n] be maximal such that βm ≤ β̄ (noting that such an
m exists by the assumption that β0 ≤ β̄). Then

βn ≤ β̄e
−α

∑n
k=m+1

1
α

log
βk−1
βk ≤ β̄e−α

∑n
k=m+1 λ

e
k ≤ β̄cαm+1c

−α
n+1 ≤ β̄c

−α
n+1.

One consequence of this is the bound

(9.12) sin θn+1 ≥ β−1
n ≥ β̄−1cαn+1 ≥ β̄−1e−αM

u
n+1 ,

where the first inequality follows from (C3), which lets us take θ̄ = β̄−1 and
use θ ≥ sin θ to get the bound on θn in Part I. Another consequence is that

βn ≤ β̄eL
′
c−αn ,

and so using (9.8) we have βnr
α
n ≤ eL

′
β̄c−αn r̄αcαn = eL

′
β̄r̄α ≤ ξ, and similarly

βnκ
−1
n = eL

′
β̄κ̄−1 ≤ ξ, which verifies (3.23) and (3.24). We see that (3.27)

follows from (9.8) since κnr
α
n ≤ κ̂c−αn r̄cαn = κ̂r̄α.

The bounds (3.23)–(3.24) follow just as before, while (3.25) follows since
from (9.10) since τ̄ ≤ r̄. The definition of σn in (9.9) makes (3.26) immediate,
and (3.27) follows from the final inequality in (9.8). Having verified all the
conditions of Theorem C, we observe that Parts I.–III. of Theorem D follow
from Theorem C and the inequality cn ≥ e−M

u
n .
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For Part IV. of Theorem D, we will use Part IV. of Theorem C. We
bound r̂n by

r̂n = e
∑n−1
k=0 (−λuk+δ)rn + 3ξ

n−1∑
k=0

e
∑k−1
j=0 (−λuj +δ)τk

= e
∑n−1
k=0 (−λuk+δ)r̄cn + 3ξ

n−1∑
k=0

e
∑k−1
j=0 (−λuj +δ)τ̄ e−M

s
0 e

∑k−1
j=0 (λsj+δ

′)

≤ e−nχ̄ueMu
n r̄ + 3ξ

n−1∑
k=0

e−kχ̄
u
eM

u
k τ̄ e−M

s
0 ekχ̄

s
e−M

u
k eM

s
0 ,

where the last line uses (3.35), (3.36), and the fact that cn ≤ 1. Thus

(9.13) r̂n ≤ e−nχ̄
u
eM

u
n r̄ + 3ξ

n−1∑
k=0

e−k(χ̄u−χ̄s)τ̄ .

Using (3.33) and (3.36), we have

‖ϕn − ψn‖C0 ≤ enχ̄se−Mu
n eM

s
0 · 2(τ̄ + γ̄r̂n),

and so by choosing ξ small enough we can use (9.13) to guarantee that

‖ϕn − ψn‖C0 ≤ enχ̄se−Mu
n eM

s
0 (3τ̄ + 2e−nχ̄

u
eM

u
n r̄),

which proves (3.40).
Finally, Part V. of Theorem D follows directly from the following lemma,

due to Pliss [8]; a proof may be found in [4, Lemma 11.2.6], and we also
prove a slightly more general version in Proposition 9.2.

Lemma 9.1. Given L ≥ χ > χ̂ > 0, let ρ = (χ− χ̂)/(L− χ̂). Then, given
any real numbers λ1, . . . , λN such that

N∑
j=1

λj ≥ χN and λj ≤ L for every 1 ≤ j ≤ N,

there are ` ≥ ρN and 1 < n1 < · · · < n` ≤ N such that

ni∑
j=n+1

λj ≥ χ̂(ni − n) for every 0 ≤ n < ni and i = 1, . . . , `.

9.3. Proof of Theorem A. Theorem A follows directly from Theorem D
by setting σ̄ = τ̄ = 0. To get the appropriate density observe that for every
χu < χe we have 1

N

∑N−1
k=0 λek ≥ χu for all sufficiently large N , whence the

density of hyperbolic times is at least (χu− χ̂u)/(L− χ̂u), and since χu < χe

was arbitrary, this suffices.
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9.4. Proof of Theorem B. Let Γ = {n ≤ 0 | Mn(χ̂) = 0}. We show that
Γ has positive lower asymptotic density. Indeed, by (3.9) and the hypothesis
on χ̂u, for every χ ∈ (χ̂u, χe) there exists N0 < 0 such that for all N ≤ N0

we have
∑

N≤k<0 λ
e
k ≥ χ|N |. Given such an N , let m0 = m0(N) be the

smallest value of m with the property that

(9.14)
∑

m≤k<0

(λek − χ̂u) ≤ N(χ̂u − χ).

By the assumption onN0, this inequality fails for allm < N , and som0 ≥ N .
Furthermore, since λek ≤ L, the equality is true as long as |m| ≤ ρ̂|N |, where
ρ̂ = (χ− χ̂)/(L− χ̂) as in Lemma 9.1. It follows that N ≤ m0 ≤ ρ̂N .

Let ΓN be the set of effective hyperbolic times n ∈ (m0, 0]; that is, the
set of n such that

(9.15)
∑

m≤k<n
(λek − χ̂u) ≥ 0

for all m0 ≤ m < n. We claim that

(1) ΓN ⊂ Γ; and
(2) #ΓN ≥ ρ̂2|N |.

For the first claim, observe that given n ∈ ΓN , it suffices to prove (9.15) for
m < m0. We can set m = m0 in (9.14) and (9.15) and take the difference
of the two inequalities to obtain

(9.16)
∑

n≤k<0

(λek − χ̂u) ≤ N(χ̂u − χ).

Furthermore, for m < m0 we have

(9.17)
∑

m≤k<0

(λek − χ̂u) > N(χ̂u − χ)

by the definition of m0. Subtracting (9.16) from (9.17) gives∑
m≤k<n

(λek − χ̂u) > 0,

and so Mn(χ̂u) = 0, so n ∈ Γ.
For the second claim, we observe that by Lemma 9.1 we have #ΓN ≥

ρ̂|m0|, and it follows that from the earlier estimates on m0 that #ΓN ≥
ρ̂2|N |. This holds for all N ≤ N0, and so Γ has lower asymptotic density

at least ρ̂2. As χ approaches χe, we have ρ̂2 →
(
χe−χ̂u
L−χ̂u

)2
, which proves the

claim regarding asymptotic density of Γ.
Now fix δ < min(χ̂u − χ̄u, χ̂g), and let γ̄, ξ be as in Theorem C, and r̄, κ̄

as in (9.8); let θ̄ = β̄−1. We want to define a sequence cn that will satisfy
the recursive relationship

(9.18) cn+1 = min(eλ
e
n−δcn, 1)
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and allow us to define rn, κn as in the proof of Theorem D. To this end, we
let Θ = {m < 0 | βm ≤ β̄}, and note that Θ is infinite by the hypotheses

of the theorem. Given m ∈ Θ, define {c(m)
n | m ≤ n ≤ 0} by c

(m)
m = 1 and

by (9.18) for m < n ≤ 0.
Given n ∈ Γ and m ∈ Θ with m ≤ n, we have as in the proof of Theorem D

that c
(m)
n = 1. In particular, together with the definition of c

(m)
n , this shows

that if n ≤ 0 is arbitrary, then given any m1 ≤ n1 < n and m2 ≤ n2 < n

with mi ∈ Θ and ni ∈ Γ, we have c
(m1)
n = c

(m2)
n . Thus we may define without

ambiguity a sequence cn as follows: given n, pick any n′ ∈ Γ∩ (−∞, n) and

any m ∈ Θ ∩ (−∞, n′], and let cn = c
(m)
n .

Part II. of Theorem B follows from the same argument as (9.12) in the
proof of Theorem D. Also as in that proof, we let rn = r̄cn, κn = κ̄c−αn , and
γn = γ̄ for all n. The arguments there show that (7.3)–(7.15) are satisfied,
and so Parts III. and IV. of Theorem B follow from Parts I. and II. of
Theorem 8.1, noting the bound cn ≥ e−Mn(χ̂u) from the proof of Theorem D.

Part V. of Theorem B follows from Part III. of Theorem 8.1 once we
verify (8.2) using the criterion of asymptotic domination. As in the proof
of Theorem C, for any fixed δ > 0 we can choose γ̄, r̄, θ̄ small enough and
κ̄ large enough that λ̌sn < λsn + δ and λ̂un > λun − δ. Choosing δ such that
2δ < χ̂g, we see from (3.10) that

lim
n→−∞

1

|n|

−1∑
k=n

(λ̂uk − λ̌sk) > 0,

which implies (8.2) because γn = γ̄ is constant.
To complete the proof of Theorem B, it remains only to show Part VI.,

but this follows directly from Part V. of Theorem 8.1.

9.5. Proof of Propositions 3.7 and 3.8. We start with a general result
about subadditive sequences, which implies Proposition 3.7.

Let A = {Ak,n | k < n ∈ N} be subadditive in the following sense:
Ak,n ≤ Ak,m + Am,n for all k < m < n. In particular, what follows applies

when Ak,n =
∑n−1

j=k aj for some sequence aj ∈ R, but we also have in mind

the slightly more general application when Ak,n = ‖Dfn−k(fkx)|Es(fkx)‖.
Given λ > 0, consider the following set of hyperbolic times for A:

(9.19) Γλ(A) = {n ∈ N | Ak,n ≥ λ(n− k) for all 0 ≤ k < n}.
A version of Pliss’ lemma (see [4, Lemma 11.2.6] for the usual version and
its proof) applies here.

Proposition 9.2. If Ak,n ≤ L(n − k) ∈ R for all k < n and A0,n ≥ χn,

where χ > 0, then for every λ ∈ (0, χ), we have #(Γλ(A) ∩ [1, n]) ≥ χ−λ
L−λn.

Proof. Let Bk,n = Ak,n − (n − k)λ, and note that Bk,n is also subadditive.
Let Θ = {k ∈ [1, n] | B0,k ≥ B0,` for all 0 ≤ ` < k} and enumerate the
elements of Θ as 0 = k0 < k1 < · · · < km. Note that
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(1) B0,kj+1
≤ B0,kj + (L− λ),

(2) B0,km ≥ B0,n = A0,n − nλ ≥ n(χ− λ).

We conclude that #Θ = m ≥ n(χ−λ)/(L−λ). Moreover, if k ∈ Θ then for
every 0 ≤ ` < k we have B0,` ≤ B0,k ≤ B0,` + B`,k by subadditivity, and so
0 ≤ B`,k = A`,k− (k−`)λ. In particular, every Θ ⊂ Γλ(A), which completes
the proof. �

Now we fix some L ∈ R and Θ ⊂ N and consider B = {Bk,n} with the
property that

(9.20) Bk,n ≥ Ak,n − L#(Θ ∩ [k, n)).

We will eventually apply this to A = {
∑n−1

j=k (λuj − ∆j) | k ≤ n ∈ N} and

B = {
∑n−1

j=k λ
e
j | k ≤ n ∈ N}, where in this case Θ = {n ∈ N | θn < θ̄}.

The following result says that provided Θ is sufficiently sparse, passing
from A to B does not change the set of hyperbolic times by very much.

Proposition 9.3. If A,B are related by (9.20), then for every 0 < λ′ < λ
we have

(9.21) δ (Γλ(A) \ Γλ′(B)) ≤ δ(Θ)L

λ− λ′
.

Proof. Let Ck,n = (n − k) − #(Θ ∩ [k, n)) and observe that C = {Ck,n} is

additive. Moreover, limn→∞
1
nC0,n = 1 − δ(Θ), and so by Proposition 9.2

we see that for every 0 < α < 1− δ(Θ) we have

(9.22) δ(Γα(C)) ≥ 1− δ(Θ)− α
1− α

= 1− δ(Θ)

1− α
.

Now if n ∈ Γλ(A) \ Γλ′(B), then

Ak,n ≥ λ(n− k) for all 0 ≤ k < n,

but on the other hand there exists 0 ≤ k < n such that

Ak,n − L#(Θ ∩ [k, n)) ≤ Bk,n < λ′(n− k).

Together these give (for this value of k)

(λ− λ′)(n− k) < L#(Θ ∩ [k, n)) = L((n− k)− Ck,n),

and we conclude that

Ck,n < (n− k)

(
1− λ− λ′

L

)
,

so that taking α = (1− λ−λ′
L ), we have n ∈ N \Γα(C). From (9.22), we have

δ(N \ Γα(C)) ≤ δ(Θ)

1− α
=
δ(Θ)L

λ− λ′
,

which completes the proof. �
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Proposition 3.7 follows immediately from Proposition 9.3 by considering
Ak,n =

∑n−1
j=k (λuj −∆j) and Bk,n =

∑n−1
j=k λ

e
j ; these are related by (9.20) as

a consequence of condition (C4).

10. Proofs of applications

10.1. Proof of Theorem 4.1. For Theorem 4.1, it suffices to apply Theo-
rem B using local coordinates around the backwards trajectory of x.

10.2. Proof of Theorem 6.4. Given parameters r, τ, σ, κ, let Cn be defined
as in (2.6) for the decomposition Tfn(x)M = Dfn(Eu)⊕Dfn(Es). Consider
the collection of u-admissible manifolds

Wu
n(r, τ, σ, κ) := {expfn(x) graphψ | ψ ∈ Cn(r, τ, σ, κ)}.

Define the set of s-admissible manifolds Ws
n similarly, with the roles of s, u

reversed.
Fix χ̄s,u such that χ̂s < χ̄s < 0 < χ̄u < χ̂u, and let γ̄, r̄, θ̄, σ̄, τ̄ , κ̄ > 0 be

given by Theorem D. Assume that the parameters are chosen so that the
bounds in (3.34) hold when κ̄ is replaced by 2κ̂, where κ̂ = κ̄eαM

u
. Let p0

be such that p0χ̄
u ≥Mu log 2.

Using (6.2) and (6.4) to verify (3.35) and (6.8)–(6.9) to verify (3.36),
we can apply Theorem D to show that for p ≥ p0, the map fp induces a
well-defined graph transform

Wu
0 (r̄, τ̄ e−M̂

s
, σ̄e−M̂

s
, 2κ̂)→Wu

p (r̄e−M
u
, τ̄ e−M

u
epχ̄

s
, σ̄eαpχ̄

s
, κ̂).

Let τ̂ = 1
2 τ̄ e
−M̂s

and σ̂ = 1
2 σ̄e

−M̂s
. Then increasing p0 if necessary, we have

for p ≥ p0 that the graph transform induced by fp acts between

Wu
0 (r̄, 2τ̂ , 2σ̂, 2κ̂)→Wu

p (r̄e−M
u
, τ̂ , σ̂, κ̂).

Let r̂ = e−p0χ̄
u
eM

u
r̄ + τ̄ and choose τ̄ , p0 such that 2r̂ ≤ r̄e−M

u
. Then by

Part IV. of Theorem D, the graph transform induced by fp acts between

Wu
0 (r̂, 2τ̂ , 2σ̂, 2κ̂)→Wu

p (2r̂, τ̂ , σ̂, κ̂).

Now we can choose ε > 0 such that under the conditions of the theorem, the
map expx ◦ exp−1

fp(x) embeds Wu
p (2r̂, τ̂ , σ̂, κ̂) into Wu

0 (r̂, 2τ̂ , 2σ̂, 2κ̂), and we

can view the graph transform induced by fp as a self-map onWu
0 . By (3.40),

this self-map is a contraction, and so iterating any u-admissible manifold
under this transform yields a sequence of u-admissible manifolds converging
to a fixed point of the transform – that is, a u-admissible manifold W u near
x such that fp(W u) ⊃W u.

Apply the same argument to s-admissible manifolds we obtain a fixed
point for the graph transform associated to f−p – that is, an s-admissible
manifold W s near x such that f−p(W s) ⊃W s. By the bounds thatWu

0 and
Ws

0 impose on the geometry of W u and W s, they have a unique intersection
point z, which is the periodic point we seek.
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11. Derivation of classical Hadamard–Perron theorems

We state two classical Hadamard–Perron theorems that follow from The-
orem 8.1. The uniform version in Theorem 11.1 is derived from [7, Theorem
6.2.8], while the non-uniform version in Theorem 11.3 follows [4, Theorem
7.5.1].

11.1. Uniform hyperbolicity. Fix r0 > 0 and let Ω = Bu(0, r0)×Bs(0, r0) ⊂
Rd, where Bu and Bs are the balls in Eu = Rk and Es = Rd−k, respectively.
Let µ, λ ∈ R be such that µ > max(1, λ) and for each n ≤ 0 let fn : Ω→ Rd
be a C1 map such that for (x, y) ∈ Rk ⊕ Rd−k

fn(x, y) = (Anx+ gn(x, y), Bny + hn(x, y))

for some linear maps An : Rk → Rk and Bn : Rd−k → Rd−k with ‖A−1
n ‖ ≤

µ−1, ‖Bn‖ ≤ λ and gn(0) = 0, hn(0) = 0.

Theorem 11.1. There exists γ0 = γ0(µ, λ) ∈ (0, 1] such that for all 0 <
γ < γ0 there exists δ0 = δ0(µ, λ, γ) such that the following is true.

If max(‖gn‖C1 , ‖hn‖C1) < δ < δ0 for all n, then there exist λ′ = λ′(λ, γ, δ) <
µ′ = µ′(µ, γ, δ) such that limγ,δ→0 λ

′ = λ, limγ,δ→0 µ
′ = µ and a unique fam-

ily {W+
n }n∈Z of k-dimensional C1 manifolds

W+
n = {(x, ϕ+

n (x)) | x ∈ Rk} = graphϕ+
n

where ϕ+
n : Bu(r0) → Bs(r0), supn≤0 ‖Dϕ+

n ‖ < γ, for which the following
properties hold.

(i) fn(W+
n ) ∩ Ωn+1 = W+

n+1.

(ii) ‖fn(y)− fn(z)‖ > µ′‖y − z‖ for y, z ∈W+
n .

(iii) Let λ′ < ν < µ′. If ‖f−1
n−L ◦ · · · ◦ f

−1
n−1(z)‖ < Cν−L‖z‖ for all L ≥ 0

and some C > 0 then z ∈W+
n .

Remark 11.2. The result in [7, Theorem 6.2.8] covers stable manifolds as
well; to get these one need only apply the above result to the sequence of
inverse maps, placing similar requirements on the nonlinear parts of f−1

n .

Derivation of Theorem 11.1 from Theorem 8.1. Translating the hypotheses
of Theorem 11.1 into the notation of Theorems 7.1 and 8.1, we have

eλ
u
n = µ, eλ

s
n = λ, θn =

π

2
.

Let 0 < γ0 ≤ 1 be such that

λ(1 + γ0) < µ,

and given 0 < γ < γ0, let δ0 be such that

max
(
1, λ+ (1 + γ−1)δ0

)
<
µ− δ0(1 + γ)

1 + γ
.



42 VAUGHN CLIMENHAGA AND YAKOV PESIN

Now given 0 < δ < δ0, let

λ′ := λ+ (1 + γ−1)δ,

µ′ :=
µ− δ(1 + γ)

1 + γ
.

If max(‖gn‖C1 , ‖hn‖C1) < δ, then we have Ẑfn(t) < δ for all t, and so (7.5)

gives εfn ≤ δ. Taking γn = γ for all n, (7.6)–(7.9) give

εun ≤ (1 + γ)δ, εsn ≤ (1 + γ−1)δ, ε̌n ≤ (1 + γ−1)δ, εχn ≥ − log(1 + γ),

from which we have

max
(
eλ̌

s
n , eλ̂

s
n

)
≤ λ′ < µ′ ≤ eχn ≤ eλ̂un .

In particular, (8.2) is satisfied. We see that (7.12)–(7.15) are satisfied if we
take γn = γ for all n and if we take rn = r0.

Thus it only remains to get moduli of continuity Zψn satisfying (7.11),
which we do via Proposition 8.2. This requires checking that the sum in (8.7)
converges when n = 0. In the notation of the present theorem, this sum
becomes

Zψ0 (t) =
∑
k<0

µ′
(
λ

µ′

)−(k+1)(
1 +

λ′

µ′
γ

)
Ẑfk

(
t(µ′)−k

)
.

Write ξ = λ′/µ′ < 1. Then it suffices to check that the sum∑
m>0

ξmẐf−m(t(µ′)m)

converges and goes to 0 as t → 0. Convergence is immediate for all t,

because Ẑf−m ≤ δ. For the limit, let α > 0 be arbitrary and take M such

that
∑

m>M ξm < α. Then take τ such that
∑M

m=0 Ẑ
f
−m(τ(µ′)m) < α. It

follows that for every 0 < t < τ we have∑
m>0

ξmẐf−m(t(µ′)m) ≤ αδ + α.

Since α was arbitrary this completes the proof: (8.7) holds, hence Theo-
rem 8.1 applies, and the conclusions of Theorem 8.1 imply the conclusions
of Theorem 11.1. �

11.2. Non-uniform hyperbolicity. The classical non-uniform result can
be found in [4, Theorem 7.5.1]. We give a version adapted to our notation
and our convention of working with unstable manifolds rather than stable
manifolds.

In the non-uniform setting, one considers a sequence of diffeomorphisms
and uses the Lyapunov metric, which has the effect that the rates of expan-
sion and contraction are still uniform, as is the angle between the stable and
unstable directions, but the amount of nonlinearity may grow.
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Let Ω = Bu(0, r0)×Bs(0, r0) ⊂ Rd. For each n ≤ 0 let fn : Ω→ Rd be a
C1+α map such that for (x, y) ∈ Rk ⊕ Rd−k we have

fn(v, w) = (Anv + gn(v, w), Bnw + hn(v, w)),

where An : Rk → Rk and Bn : Rd−k → Rd−k are linear maps and gn : Rd →
Rk and hn : Rd → Rd−k are nonlinear maps defined for each v ∈ Bs(r0) ⊂ Rk
and w ∈ Bu(r0) ⊂ Rd−k, with the property that gn(0, 0) = Dgn(0, 0) =
hn(0, 0) = Dhn(0, 0) = 0.

Given n ≤ 0, write Fn = f−1 ◦ f−2 ◦ · · · ◦ fn, and write F−1
n wherever the

inverse is defined. Let κ be any number satisfying

max{λ′, ζ1/α} < κ < µ′,

where the numbers λ′, µ′, and ζ satisfy

‖A−1
n ‖−1 ≥ µ′, ‖Bn‖ ≤ λ′, where µ′ > max{1, λ′},

as well as

1 < ζ < (µ′)α, 0 < α ≤ 1, C > 0

such that

‖Dgn(v1, w1)−Dgn(v2, w2)‖ ≤ Cζ |n|(‖v1 − v2‖+ ‖w1 − w2‖)α,

and similarly for hn.

Theorem 11.3. There exist D > 0 and r0 > r > 0 and a map ψu : Bu(r)→
Rd−k such that

(1) ψu is of class C1+α and ψu(0) = 0 and Dψu(0) = 0;
(2) ‖Dψu(v1)−Dψu(v2)‖ ≤ D‖v1 − v2‖α for any v1, v2 ∈ Bu(r);
(3) if n ≤ 0 and v ∈ Bu(r) then

F−1
n (v, ψu(v)) ∈ Bu(r)×Bs(r),∥∥F−1

n (v, ψu(v))
∥∥ ≤ Dκn‖(v, ψu(v))‖;

(4) given v ∈ Bu(r) and w ∈ Bs(r), if there is a number K > 0 such
that

F−1
n (v, w) ∈ Bu(r)×Bs(r),

∥∥F−1
n (v, w)

∥∥ ≤ Kκn
for every n ≤ 0, then w = ψu(v);

(5) the numbers D and r depend only on the numbers λ′, µ′, ζ, α, κ, and
C.

Remark 11.4. The result in [4, Theorem 7.5.1] deals with stable manifolds
rather than unstable manifolds. In order for our approach to treat stable
manifolds, we need to impose bounds on f−1

n rather than on fn; ultimately
this is due to the fact that we use Hadamard’s approach (graph transform),
while the proof in [4] uses Perron’s approach (implicit function theorem).
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Derivation of Theorem 11.3 from Theorem 8.1. Choose γ ∈ (0, 1] such that

(1 + γ)κ < µ′

and define C ′, C ′′ by

C ′ = C(1 + γ)1+α, C ′′ = C ′/γ.

Let γn = γ for all n ≤ 0; then for any choice of rn > 0, we have

(11.1) (1 + γn)Ẑfn(rn(1 + γn)) ≤ C ′ζ |n|rαn .

(Observe that ζ |n| →∞ as n→ −∞.) Let r ∈ (0, r0) be such that

(11.2) λ′ + C ′′rα < κ <
µ′ − C ′rα

1 + γ
,

and define rn for n < 0 by

(11.3) rn = κnr.

Then since κα > ζ, we have ζ |n|rαn < rα for all n < 0, and in particular

εfn <
C′

1+γ r
α.

Let χn < λ̂un < λun and λ̌sn, λ̂
s
n > λsn be as in (7.6)–(7.9). Then (11.1)–

(11.3) imply that

(11.4)

max
(
eλ̌

s
n , eλ̂

s
n

)
≤ eλsn + C ′′rα ≤ λ′ + C ′′rα < κ,

eχn =
eλ̂

u
n

1 + γn
≥ eλ

u
n − C ′ζnrαn

1 + γn
≥ µ′ − C ′rα

1 + γ
> κ.

This establishes (7.12)–(7.15), and (8.2) follows since λ̂uk > λ̂sk for all k. Thus

it only remains to find moduli of continuity Zψn satisfying (7.11), which we
again do via Proposition 8.2. Once we have checked the convergence of the
sum in (8.7), we will be able to apply Theorem 8.1 and derive the conclusions
of Theorem 11.3.

The inequalities (11.4), together with (11.1) and (11.3), show that for Zψ0
as in (8.7) we have

Zψ0 (t) ≤
∑
m<0

κ−1
( κ
λ′

)m
C ′ζ−m(tκm)α ≤ κC ′tα

∑
m<0

( κ
λ′

)m
.

Thus Theorem 8.1 proves the existence of a C1 unstable manifold for the
sequence fn with the dynamical properties claimed in Theorem 11.3. Fur-

thermore, it shows that Zψ0 (t) is a modulus of continuity for Dψu, which
shows that ψu is C1+α with Hölder constant κC ′

∑
m<0(κ/λ′)m, which com-

pletes the proof. �
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12. Relationship between non-uniform hyperbolicity and
effective hyperbolicity

We briefly discuss some differences between the notion of non-uniform
hyperbolicity and the notion of effective hyperbolicity. Note that these dif-
ferences appear at the purely linear level and do not depend on how the
different techniques deal with non-linear behaviour.

12.1. (Non-uniform) hyperbolicity without effective hyperbolicity.
A sequence of germs may be non-uniformly hyperbolic but not effectively
hyperbolic. This can happen when there are multiple unstable directions
which undergo expansion at different times: the notion of effective hyper-
bolicity used in this paper is not refined enough to detect this phenomenon.
For example, let fn : R2 → R2 be defined by fn(x, y) = (3x, y/2) when n is
even, and fn(x, y) = (x/2, 3y) when n is odd. Then λun = − log 2 for every
n and hence fn is not effectively hyperbolic. However, the sequence fn is
non-uniformly hyperbolic with positive Lyapunov exponents 1

2(log 3− log 2)

in all directions in R2.

12.2. Effective hyperbolicity without non-uniform hyperbolicity. A
sequence of germs may be effectively hyperbolic but not non-uniformly hy-
perbolic, i.e., without having slowly varying (tempered) constants, which
are required for non-uniform hyperbolicity [4]. For example, let fn : R→ R
be defined by fn(x) = eλnx, where λ1 = 4 and for k ≥ 1 we have

λn =

{
4 2k ≤ n < 2k + 2k−1,

−3 2k + 2k−1 ≤ n < 2k+1.

Then limn→∞
1
n

∑n−1
k=0 λk = 1/2 > 0, so the sequence is effectively hy-

perbolic, but if Mn is any sequence of constants such that
∑n

k=m λk ≥
(n − m)χ − Mn for some χ ∈ (0, 1/2) and every 0 ≤ m < n, then the
definition of λn requires that

M2k ≥

 2k−1∑
j=2k−2k−2

λj

− 2k−2χ = 2k−2(3− χ).

In particular, limn→∞
1
nMn >

1
2 = limn→∞

1
n

∑n−1
k=0 λk, so any sequence of

constants for non-uniform hyperbolicity must vary more quickly than the
Lyapunov exponent.

The example described here is in some sense atypical – the set of trajec-
tories that are effectively hyperbolic but fail to be non-uniformly hyperbolic
has measure zero with respect to any invariant measure. Indeed, if an ergodic
measure gives positive weight to the set of effectively hyperbolic trajectories,
then it is a hyperbolic measure and the whole classical theory of non-uniform
hyperbolicity applies.
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We see from this that effective hyperbolicity is most useful when no a
priori information about invariant measures is available. This is the case,
for example, when trying to construct SRB measures for dissipative systems.
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