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The talk in one slide

Phenomenon
Deterministic systems can exhibit stochastic behaviour
over long time scales

Known Mechanism driving this is phase space expansion

Examples Lorenz equations, expanding maps, logistic map

Research What happens when expansion is non-uniform?
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Predictions in dynamical systems

Key objects:

X = phase space for a dynamical system.
Points in X correspond to configurations of the system.

f : X 	 describes evolution of the state of the system over a single
time step. Can also consider continuous-time systems.

Standing assumptions:

X ⊂ Rn

f is continuous

Predictions rely on finding f n(x) given x .

initial error⇒ must compare f n(x) and f n(y) when x ∼ y

Distinct problem from accounting for discrepancy between model and
real-world system, or for numerical error in computation of f n(x).
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A mechanism for stochastic behaviour

Fix x ∼ y . Two extremes:

Stable behaviour: d(f nx , f ny)→ 0
Even better: there is p = f (p) such that f nx → p for all x

Unstable behaviour: d(f nx , f ny) grows quickly

In “chaotic” systems, unstable behaviour is prevalent:

initial error grows exponentially fast

prediction f n(x) quickly diverges from reality

Another perspective: U ⊂ X a small neighbourhood, consider f n(U).

In chaotic systems, diameter of iterates f n(U) becomes large
(exponentially quickly) no matter how small U is.
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Lorenz equations (1963) – atmospheric dynamics

ẋ = σ(y − x) σ = 10

ẏ = x(ρ− z)− y ρ = 28

ż = xy − βz β = 8/3

f(x)

x0 1

Doubling map f : S1 	, S1 ⊂ C, z = e ix 7→ z2 = e i(2x)

Full shift Σ+
2 = {0, 1}N, f = σ : x0x1x2 . . . 7→ x1x2x3 . . .

Logistic map fλ : [0, 1] 	, x 7→ λx(1− x), λ ∈ [0, 4]

Code trajectories with 0s and 1s, but don’t get full shift.
x

f(x)
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Predictions for the doubling map
f(x)

x0 1

Doubling map f : S1 	, S1 ⊂ C, z = e ix 7→ z2 = e i(2x)

Full shift Σ+
2 = {0, 1}N, f = σ : x0x1x2 . . . 7→ x1x2x3 . . .

Predictions are impossible: If initial error is ε then error at time n is ε2n.

Lengthening prediction by time 1 requires doubling initial accuracy.

Predictions are easy: Lebesgue measure ν on the circle is f -invariant

ν(f −1E ) = ν{z | f (z) ∈ E} = ν(E ) for every measurable E ⊂ S1

It is also ergodic: if f −1(E ) = E then ν(E ) = 0 or 1.

Birkhoff ergodic theorem: for every ϕ ∈ L1(S1) and ν-a.e. z ∈ S1,

lim
n→∞

1

n

n−1∑
k=0

ϕ(f kz) =

∫
S1

ϕ(y) dν(y)

law of large
numbers
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A Bernoulli process

Lebesgue measure on the circle passes to a measure µ on Σ+
2 = {0, 1}N

µ(E ) = ν(π(E )), where π : Σ+
2 → S1, x 7→ exp(πi

∑∞
k=0 xk2−k)

Define ϕ : Σ+
2 → R by ϕ(x) = x0. This gives a sequence of random

variables on (Σ+
2 , µ) by Xn = ϕ(f nx).

These are IID (Bernoulli process).

Central limit theorem: 1√
n

∑n
k=1(Xk − EX ) converges to Gaussian

Large deviations: Estimates on P(| 1n
∑n

k=1 Xk − EX | > δ)

Law of the iterated logarithm:
∑n

k=1(Xk−EX )√
n log log n

converges to zero in

probability but not almost surely

. . . and so on . . .

This works for any “nice enough” ϕ, and all this happens even though
the dynamical system is deterministic.
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Abundance of invariant measures

Idea
Deal with chaotic behaviour by treating the observa-
tions ϕ ◦ f k as random variables.

Requires an invariant measure µ, and Σ+
2 has many such measures.

Bernoulli measures – weighted coin flips νr , r ∈ (0, 1)

Periodic orbit measures – atomic δO(p) = 1
n

∑n−1
k=0 δf kp

Everything in between: Markov measures, Gibbs measures, etc.

Some have good statistical properties, some don’t. Which are natural?

Look for an absolutely continuous invariant measure (acim).
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Expansion and contraction

Can we deal with the logistic map fλ(x) = λx(1− x) this way?

Find acim µ, treat Xn = ϕ(f kx) as a stochastic process.

Doubling map has uniform expansion: d(fx , fy) = 2d(x , y) if x ∼ y

Destroys correlations and yields stochastic behaviour

Logistic map has both expansion and contraction:

d(fx , fy) < d(x , y) if x , y near critical point

d(fx , fy) > d(x , y) if away from critical point
x

f(x)

How much time does a typical orbit spend near critical point?
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Typical orbits for logistic map

Consider logistic map f (x) = 4x(1− x). “Typical” means w.r.t. Lebesgue,
but now Lebesgue measure is not invariant.

Fact: dµ = π−1(x(1− x))−1/2 dx is an ergodic invariant measure

Claim: ∃χ > 0 such that typical points x have |(f n)′(x)| ≈ eχn

1

n
log |(f n)′(x)| =

1

n

n−1∑
k=0

log |f ′(f kx)| (chain rule)

Leb-a.e.−−−−→
∫ 1

0
log |f ′(y)| dµ(y) (ergodic theorem)

=
1

π

∫ 1

0

log |4− 8y |√
y(1− y)

dy (definition of f , µ)

= log 2 (wizardry)

Vaughn Climenhaga (University of Houston) October 5, 2012 10 / 19



Chaos Examples Doubling map Logistic map Bifurcation diagram Summary

Typical orbits for logistic map

Consider logistic map f (x) = 4x(1− x). “Typical” means w.r.t. Lebesgue,
but now Lebesgue measure is not invariant.

Fact: dµ = π−1(x(1− x))−1/2 dx is an ergodic invariant measure

Claim: ∃χ > 0 such that typical points x have |(f n)′(x)| ≈ eχn

1

n
log |(f n)′(x)| =

1

n

n−1∑
k=0

log |f ′(f kx)| (chain rule)

Leb-a.e.−−−−→
∫ 1

0
log |f ′(y)| dµ(y) (ergodic theorem)

=
1

π

∫ 1

0

log |4− 8y |√
y(1− y)

dy (definition of f , µ)

= log 2 (wizardry)

Vaughn Climenhaga (University of Houston) October 5, 2012 10 / 19



Chaos Examples Doubling map Logistic map Bifurcation diagram Summary

Dependence on parameter value

The parameter λ in fλ(x) = λx(1− x) ranges from 0 to 4.

When λ = 4, expansion beats contraction for typical orbits.

For 0 ≤ λ ≤ 3, there is an attracting fixed point (contraction wins).
No stochastic behaviour in this case.

x = fλ(x) = λx(1− x) ⇔ x = 0, 1− 1

λ
f ′λ(x) = λ− 2λx = λ, 2− λ

x

f(x)

λ = 0.5

What happens for 3 < λ < 4? Which is dominant,
expansion or contraction?
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Dependence on parameter value
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x = fλ(x) = λx(1− x) ⇔ x = 0, 1− 1

λ
f ′λ(x) = λ− 2λx = λ, 2− λ

x

f(x)

λ = 3.2

What happens for 3 < λ < 4? Which is dominant,
expansion or contraction?

Vaughn Climenhaga (University of Houston) October 5, 2012 11 / 19



Chaos Examples Doubling map Logistic map Bifurcation diagram Summary

Dependence on parameter value

The parameter λ in fλ(x) = λx(1− x) ranges from 0 to 4.

When λ = 4, expansion beats contraction for typical orbits.

For 0 ≤ λ ≤ 3, there is an attracting fixed point (contraction wins).
No stochastic behaviour in this case.

x = fλ(x) = λx(1− x) ⇔ x = 0, 1− 1

λ
f ′λ(x) = λ− 2λx = λ, 2− λ

x

f(x)

λ = 3.5

What happens for 3 < λ < 4? Which is dominant,
expansion or contraction?

Vaughn Climenhaga (University of Houston) October 5, 2012 11 / 19



Chaos Examples Doubling map Logistic map Bifurcation diagram Summary

Dependence on parameter value

The parameter λ in fλ(x) = λx(1− x) ranges from 0 to 4.

When λ = 4, expansion beats contraction for typical orbits.

For 0 ≤ λ ≤ 3, there is an attracting fixed point (contraction wins).
No stochastic behaviour in this case.

x = fλ(x) = λx(1− x) ⇔ x = 0, 1− 1

λ
f ′λ(x) = λ− 2λx = λ, 2− λ

x

f(x)

λ = 3.8

What happens for 3 < λ < 4? Which is dominant,
expansion or contraction?

Vaughn Climenhaga (University of Houston) October 5, 2012 11 / 19



Chaos Examples Doubling map Logistic map Bifurcation diagram Summary

Dependence on parameter value

The parameter λ in fλ(x) = λx(1− x) ranges from 0 to 4.

When λ = 4, expansion beats contraction for typical orbits.

For 0 ≤ λ ≤ 3, there is an attracting fixed point (contraction wins).
No stochastic behaviour in this case.

x = fλ(x) = λx(1− x) ⇔ x = 0, 1− 1

λ
f ′λ(x) = λ− 2λx = λ, 2− λ

x

f(x)

λ = 4

What happens for 3 < λ < 4? Which is dominant,
expansion or contraction?

Vaughn Climenhaga (University of Houston) October 5, 2012 11 / 19



Chaos Examples Doubling map Logistic map Bifurcation diagram Summary

Vaughn Climenhaga (University of Houston) October 5, 2012 12 / 19



Chaos Examples Doubling map Logistic map Bifurcation diagram Summary

Classification of behaviour

At least two types of behaviour:

1 Attracting periodic orbit: f p(x) = x and f n(y)→ O(x) for Leb-a.e. y

2 Absolutely continuous invariant measure: µ� Leb, µ ◦ f −1 = µ, and

lim
n→∞

1

n

n−1∑
k=0

ϕ(f ky) =

∫
ϕ(x) dµ(x)

for Leb-a.e. y and every ϕ ∈ C ([0, 1])

S = {λ ∈ [3, 4] | periodic attractor} (stable behaviour)

U = {λ ∈ [3, 4] | acim} (unstable behaviour)

S is open and dense. . . complement is a Cantor set

U has positive Lebesgue measure despite being nowhere dense
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Bifurcations

λ < 3 : one attracting fixed point, no
periodic orbits

3 < λ < 3 + ε : fixed point is repelling,
period-2 orbit is attracting x

f 2(x)

λ = 0.5

There is a bifurcation at λ = 3 – qualitative behaviour changes

Another bifurcation happens at λ ≈ 3.45:

Period-2 orbit becomes unstable

A stable period-4 orbit is created

Sometime before λ ≈ 3.56 the period-4 orbit becomes unstable and
spawns a period-8 orbit. . .
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Period doubling cascades and universality

At λn, period 2n orbit becomes
unstable, period 2n+1 orbit
is born: this is a Period
doubling cascade

λn → λ∞ ≈ 3.569946 . . .

It turns out that λ∞ − λn ≈ Cδn, where δ ≈ 1/4.6692 . . . is the
Feigenbaum constant.

Universality
This applies to a very large class of one-parameter fam-
ilies fλ, not just the logistic maps.
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Windows of stability

Contraction beats expansion for λ < λ∞.

What happens for λ > λ∞?

Sometimes expansion wins (there is an acip
and chaos), but there are windows of stabil-
ity where fλ has an attracting periodic orbit. x

f 3(x)

λ = 3.815

These windows of stability are dense
in [0, 4]

Theorem: If there is a period-3 orbit
then there are orbits of all periods.
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More on windows of stability

Periodic orbits appear in
an order given by the
Sharkovsky ordering:

1 ≺ 2 ≺ 4 ≺ 8 ≺ 16 ≺ · · ·
· · ·

· · · ≺ 7 · 2n ≺ 5 · 2n ≺ 3 · 2n

· · ·
· · · ≺ 7 · 2 ≺ 5 · 2 ≺ 3 · 2
· · · ≺ 7 ≺ 5 ≺ 3

Each window of stability has its own period
doubling cascade. Self-similarity – a fractal
sort of behaviour

Universality constants are same as before.
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Types of chaotic behaviour

Uniform expansion (doubling map):

Phase space expanded at every point

Along an orbit, expansion at every time

Stable under perturbations

f(x)

x0 1

x

f(x)

λ = 3.8

Non-uniform expansion (logistic map):

Some expansion, some contraction

Along an orbit, contraction may occur but
expansion wins asymptotically

Very sensitive to perturbations

Higher dimensional (Lorenz equations):

Some directions expand and others contract

Expansion and contraction may be uniform
or non-uniform

Vaughn Climenhaga (University of Houston) October 5, 2012 18 / 19
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Higher dimensions

Mechanism for chaos is stretching and
folding of the phase space.

Formally, given a diffeomorphism f : M 	

of a smooth Riemannian manifold M,
need a splitting of the tangent bundle:

TxM = Eu(x)⊕ E s(x)

Invariance: DfxEu(x) = Eu(f (x)) and DfxE s(x) = E s(f (x))

Expansion in Eu(x) and contraction in E s(x)

Key step: Integrate E s,u to stable and unstable manifolds W s,u ⊂ M.

Vaughn Climenhaga (University of Houston) October 5, 2012 19 / 19
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