Randomness and determinism in dynamical systems

Vaughn Climenhaga
University of Houston

October 5, 2012

The talk in one slide

Phenomenon
Deterministic systems can exhibit stochastic behaviour over long time scales

Known Mechanism driving this is phase space expansion

Examples Lorenz equations, expanding maps, logistic map

Research What happens when expansion is non-uniform?

Predictions in dynamical systems

Key objects:

- $X=$ phase space for a dynamical system.

Points in X correspond to configurations of the system.

- $f: X \emptyset$ describes evolution of the state of the system over a single time step. Can also consider continuous-time systems.
Standing assumptions:
- $X \subset \mathbb{R}^{n}$
- f is continuous

Predictions in dynamical systems

Key objects:

- $X=$ phase space for a dynamical system.

Points in X correspond to configurations of the system.

- $f: X \emptyset$ describes evolution of the state of the system over a single time step. Can also consider continuous-time systems.
Standing assumptions:
- $X \subset \mathbb{R}^{n}$
- f is continuous

Predictions rely on finding $f^{n}(x)$ given x. initial error \Rightarrow must compare $f^{n}(x)$ and $f^{n}(y)$ when $x \sim y$

Distinct problem from accounting for discrepancy between model and real-world system, or for numerical error in computation of $f^{n}(x)$.

A mechanism for stochastic behaviour

Fix $x \sim y$. Two extremes:

- Stable behaviour: $d\left(f^{n} x, f^{n} y\right) \rightarrow 0$ Even better: there is $p=f(p)$ such that $f^{n} x \rightarrow p$ for all x
- Unstable behaviour: $d\left(f^{n} x, f^{n} y\right)$ grows quickly

In "chaotic" systems, unstable behaviour is prevalent:

- initial error grows exponentially fast
- prediction $f^{n}(x)$ quickly diverges from reality

Another perspective: $U \subset X$ a small neighbourhood, consider $f^{n}(U)$.

- In chaotic systems, diameter of iterates $f^{n}(U)$ becomes large (exponentially quickly) no matter how small U is.

Lorenz equations (1963) - atmospheric dynamics

$$
\begin{array}{ll}
\dot{x}=\sigma(y-x) & \sigma=10 \\
\dot{y}=x(\rho-z)-y & \\
\dot{z}=x y-\beta z & \beta=8 / 3
\end{array}
$$

Lorenz equations (1963) - atmospheric dynamics

$$
\begin{array}{ll}
\dot{x}=\sigma(y-x) & \sigma=10 \\
\dot{y}=x(\rho-z)-y & \rho=28 \\
\dot{z}=x y-\beta z & \beta=8 / 3
\end{array}
$$

Doubling map $f: S^{1} \curvearrowleft, S^{1} \subset \mathbb{C}, z=e^{i x} \mapsto z^{2}=e^{i(2 x)}$
Full shift $\Sigma_{2}^{+}=\{0,1\}^{\mathbb{N}}, f=\sigma: x_{0} x_{1} x_{2} \ldots \mapsto x_{1} x_{2} x_{3} \ldots$

Lorenz equations (1963) - atmospheric dynamics
$\dot{x}=\sigma(y-x) \quad \sigma=10$
$\dot{y}=x(\rho-z)-y \quad \rho=28$
$\dot{z}=x y-\beta z \quad \beta=8 / 3$

Doubling map $f: S^{1} \emptyset, S^{1} \subset \mathbb{C}, z=e^{i x} \mapsto z^{2}=e^{i(2 x)}$
Full shift $\Sigma_{2}^{+}=\{0,1\}^{\mathbb{N}}, f=\sigma: x_{0} x_{1} x_{2} \ldots \mapsto x_{1} x_{2} x_{3} \ldots$

Logistic map $f_{\lambda}:[0,1] \ominus, x \mapsto \lambda x(1-x), \lambda \in[0,4]$
Code trajectories with 0 s and 1 s , but don't get full shift.

Predictions for the doubling map

$$
\text { Doubling map } f: S^{1} \oslash, S^{1} \subset \mathbb{C}, z=e^{i x} \mapsto z^{2}=e^{i(2 x)}
$$

Full shift $\Sigma_{2}^{+}=\{0,1\}^{\mathbb{N}}, f=\sigma: x_{0} x_{1} x_{2} \ldots \mapsto x_{1} x_{2} x_{3} \ldots$
Predictions are impossible: If initial error is ϵ then error at time n is $\epsilon 2^{n}$.

- Lengthening prediction by time 1 requires doubling initial accuracy.

Predictions for the doubling map

Doubling map $f: S^{1} \emptyset, S^{1} \subset \mathbb{C}, z=e^{i x} \mapsto z^{2}=e^{i(2 x)}$
Full shift $\Sigma_{2}^{+}=\{0,1\}^{\mathbb{N}}, f=\sigma: x_{0} x_{1} x_{2} \ldots \mapsto x_{1} x_{2} x_{3} \ldots$

Predictions are easy: Lebesgue measure ν on the circle is f-invariant

$$
\nu\left(f^{-1} E\right)=\nu\{z \mid f(z) \in E\}=\nu(E) \text { for every measurable } E \subset S^{1}
$$

It is also ergodic: if $f^{-1}(E)=E$ then $\nu(E)=0$ or 1 .
Birkhoff ergodic theorem: for every $\varphi \in L^{1}\left(S^{1}\right)$ and ν-a.e. $z \in S^{1}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \varphi\left(f^{k} z\right)=\int_{S^{1}} \varphi(y) d \nu(y)
$$

Predictions for the doubling map

Doubling map $f: S^{1} \emptyset, S^{1} \subset \mathbb{C}, z=e^{i x} \mapsto z^{2}=e^{i(2 x)}$
Full shift $\Sigma_{2}^{+}=\{0,1\}^{\mathbb{N}}, f=\sigma: x_{0} x_{1} x_{2} \ldots \mapsto x_{1} x_{2} x_{3} \ldots$

Predictions are easy: Lebesgue measure ν on the circle is f-invariant

$$
\nu\left(f^{-1} E\right)=\nu\{z \mid f(z) \in E\}=\nu(E) \text { for every measurable } E \subset S^{1}
$$

It is also ergodic: if $f^{-1}(E)=E$ then $\nu(E)=0$ or 1 .
Birkhoff ergodic theorem: for every $\varphi \in L^{1}\left(S^{1}\right)$ and ν-a.e. $z \in S^{1}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \varphi\left(f^{k} z\right)=\int_{S^{1}} \varphi(y) d \nu(y)
$$

A Bernoulli process

Lebesgue measure on the circle passes to a measure μ on $\Sigma_{2}^{+}=\{0,1\}^{\mathbb{N}}$

- $\mu(E)=\nu(\pi(E))$, where $\pi: \Sigma_{2}^{+} \rightarrow S^{1}, x \mapsto \exp \left(\pi i \sum_{k=0}^{\infty} x_{k} 2^{-k}\right)$

Define φ : $\Sigma_{2}^{+} \rightarrow \mathbb{R}$ by $\varphi(x)=x_{0}$. This gives a sequence of random variables on $\left(\Sigma_{2}^{+}, \mu\right)$ by $X_{n}=\varphi\left(f^{n} x\right)$.

A Bernoulli process

Lebesgue measure on the circle passes to a measure μ on $\Sigma_{2}^{+}=\{0,1\}^{\mathbb{N}}$

- $\mu(E)=\nu(\pi(E))$, where $\pi: \Sigma_{2}^{+} \rightarrow S^{1}, x \mapsto \exp \left(\pi i \sum_{k=0}^{\infty} x_{k} 2^{-k}\right)$

Define φ : $\Sigma_{2}^{+} \rightarrow \mathbb{R}$ by $\varphi(x)=x_{0}$. This gives a sequence of random variables on ($\left.\Sigma_{2}^{+}, \mu\right)$ by $X_{n}=\varphi\left(f^{n} x\right)$. These are IID (Bernoulli process).

- Central limit theorem: $\frac{1}{\sqrt{n}} \sum_{k=1}^{n}\left(X_{k}-\mathbb{E} X\right)$ converges to Gaussian
- Large deviations: Estimates on $P\left(\left|\frac{1}{n} \sum_{k=1}^{n} X_{k}-\mathbb{E} X\right|>\delta\right)$
- Law of the iterated logarithm: $\frac{\sum_{k=1}^{n}\left(X_{k}-\mathbb{E} X\right)}{\sqrt{n \log \log n}}$ converges to zero in probability but not almost surely
-and so on ...

A Bernoulli process

Lebesgue measure on the circle passes to a measure μ on $\Sigma_{2}^{+}=\{0,1\}^{\mathbb{N}}$

- $\mu(E)=\nu(\pi(E))$, where $\pi: \Sigma_{2}^{+} \rightarrow S^{1}, x \mapsto \exp \left(\pi i \sum_{k=0}^{\infty} x_{k} 2^{-k}\right)$

Define φ : $\Sigma_{2}^{+} \rightarrow \mathbb{R}$ by $\varphi(x)=x_{0}$. This gives a sequence of random variables on ($\left.\Sigma_{2}^{+}, \mu\right)$ by $X_{n}=\varphi\left(f^{n} x\right)$. These are IID (Bernoulli process).

- Central limit theorem: $\frac{1}{\sqrt{n}} \sum_{k=1}^{n}\left(X_{k}-\mathbb{E} X\right)$ converges to Gaussian
- Large deviations: Estimates on $P\left(\left|\frac{1}{n} \sum_{k=1}^{n} X_{k}-\mathbb{E} X\right|>\delta\right)$
- Law of the iterated logarithm: $\frac{\sum_{k=1}^{n}\left(X_{k}-\mathbb{E} X\right)}{\sqrt{n \log \log n}}$ converges to zero in probability but not almost surely
- ... and so on ...

This works for any "nice enough" φ, and all this happens even though the dynamical system is deterministic.

Abundance of invariant measures

IDEA

Deal with chaotic behaviour by treating the observations $\varphi \circ f^{k}$ as random variables.

Requires an invariant measure μ, and Σ_{2}^{+}has many such measures.

- Bernoulli measures - weighted coin flips

$$
\begin{array}{r}
\nu_{r}, r \in(0,1) \\
\delta_{\mathcal{O}(p)}=\frac{1}{n} \sum_{k=0}^{n-1} \delta_{f^{k} p}
\end{array}
$$

- Periodic orbit measures - atomic
- Everything in between: Markov measures, Gibbs measures, etc.

Some have good statistical properties, some don't. Which are natural?
Look for an absolutely continuous invariant measure (acim).

Expansion and contraction

Can we deal with the logistic map $f_{\lambda}(x)=\lambda x(1-x)$ this way?

- Find acim μ, treat $X_{n}=\varphi\left(f^{k} x\right)$ as a stochastic process.

Expansion and contraction

Can we deal with the logistic map $f_{\lambda}(x)=\lambda x(1-x)$ this way?

- Find acim μ, treat $X_{n}=\varphi\left(f^{k} x\right)$ as a stochastic process.

Doubling map has uniform expansion: $d(f x, f y)=2 d(x, y)$ if $x \sim y$

- Destroys correlations and yields stochastic behaviour

Logistic map has both expansion and contraction:

- $d(f x, f y)<d(x, y)$ if x, y near critical point
- $d(f x, f y)>d(x, y)$ if away from critical point

How much time does a typical orbit spend near critical point?

Typical orbits for logistic map

Consider logistic map $f(x)=4 x(1-x)$. "Typical" means w.r.t. Lebesgue, but now Lebesgue measure is not invariant.

- Fact: $d \mu=\pi^{-1}(x(1-x))^{-1 / 2} d x$ is an ergodic invariant measure
- Claim: $\exists \chi>0$ such that typical points x have $\left|\left(f^{n}\right)^{\prime}(x)\right| \approx e^{\chi n}$

Typical orbits for logistic map

Consider logistic map $f(x)=4 x(1-x)$. "Typical" means w.r.t. Lebesgue, but now Lebesgue measure is not invariant.

- Fact: $d \mu=\pi^{-1}(x(1-x))^{-1 / 2} d x$ is an ergodic invariant measure
- Claim: $\exists \chi>0$ such that typical points x have $\left|\left(f^{n}\right)^{\prime}(x)\right| \approx e^{\chi^{n}}$

$$
\begin{array}{rlrl}
\frac{1}{n} \log \left|\left(f^{n}\right)^{\prime}(x)\right| & =\frac{1}{n} \sum_{k=0}^{n-1} \log \left|f^{\prime}\left(f^{k} x\right)\right| & & \text { (chain rule) } \\
\xrightarrow{\text { Leb-a.e. }} \int_{0}^{1} \log \left|f^{\prime}(y)\right| d \mu(y) & & \text { (ergodic theorem) } \\
& =\frac{1}{\pi} \int_{0}^{1} \frac{\log |4-8 y|}{\sqrt{y(1-y)}} d y & & \text { (definition of } f, \mu) \\
& =\log 2 & & \text { (wizardry) }
\end{array}
$$

Dependence on parameter value

The parameter λ in $f_{\lambda}(x)=\lambda x(1-x)$ ranges from 0 to 4.

- When $\lambda=4$, expansion beats contraction for typical orbits.
- For $0 \leq \lambda \leq 3$, there is an attracting fixed point (contraction wins). No stochastic behaviour in this case.

$$
\begin{gathered}
x=f_{\lambda}(x)=\lambda x(1-x) \quad \Leftrightarrow \quad x=0,1-\frac{1}{\lambda} \\
f_{\lambda}^{\prime}(x)=\lambda-2 \lambda x=\lambda, 2-\lambda
\end{gathered}
$$

Dependence on parameter value

The parameter λ in $f_{\lambda}(x)=\lambda x(1-x)$ ranges from 0 to 4.

- When $\lambda=4$, expansion beats contraction for typical orbits.
- For $0 \leq \lambda \leq 3$, there is an attracting fixed point (contraction wins). No stochastic behaviour in this case.

$$
\begin{gathered}
x=f_{\lambda}(x)=\lambda x(1-x) \quad \Leftrightarrow \quad x=0,1-\frac{1}{\lambda} \\
f_{\lambda}^{\prime}(x)=\lambda-2 \lambda x=\lambda, 2-\lambda
\end{gathered}
$$

$\lambda=1$

Dependence on parameter value

The parameter λ in $f_{\lambda}(x)=\lambda x(1-x)$ ranges from 0 to 4.

- When $\lambda=4$, expansion beats contraction for typical orbits.
- For $0 \leq \lambda \leq 3$, there is an attracting fixed point (contraction wins). No stochastic behaviour in this case.

$$
\begin{gathered}
x=f_{\lambda}(x)=\lambda x(1-x) \quad \Leftrightarrow \quad x=0,1-\frac{1}{\lambda} \\
f_{\lambda}^{\prime}(x)=\lambda-2 \lambda x=\lambda, 2-\lambda
\end{gathered}
$$

$\lambda=1.5$

Dependence on parameter value

The parameter λ in $f_{\lambda}(x)=\lambda x(1-x)$ ranges from 0 to 4.

- When $\lambda=4$, expansion beats contraction for typical orbits.
- For $0 \leq \lambda \leq 3$, there is an attracting fixed point (contraction wins). No stochastic behaviour in this case.

$$
\begin{gathered}
x=f_{\lambda}(x)=\lambda x(1-x) \quad \Leftrightarrow \quad x=0,1-\frac{1}{\lambda} \\
f_{\lambda}^{\prime}(x)=\lambda-2 \lambda x=\lambda, 2-\lambda
\end{gathered}
$$

$\lambda=2$

Dependence on parameter value

The parameter λ in $f_{\lambda}(x)=\lambda x(1-x)$ ranges from 0 to 4.

- When $\lambda=4$, expansion beats contraction for typical orbits.
- For $0 \leq \lambda \leq 3$, there is an attracting fixed point (contraction wins). No stochastic behaviour in this case.

$$
\begin{gathered}
x=f_{\lambda}(x)=\lambda x(1-x) \quad \Leftrightarrow \quad x=0,1-\frac{1}{\lambda} \\
f_{\lambda}^{\prime}(x)=\lambda-2 \lambda x=\lambda, 2-\lambda
\end{gathered}
$$

$\lambda=2.5$

Dependence on parameter value

The parameter λ in $f_{\lambda}(x)=\lambda x(1-x)$ ranges from 0 to 4.

- When $\lambda=4$, expansion beats contraction for typical orbits.
- For $0 \leq \lambda \leq 3$, there is an attracting fixed point (contraction wins). No stochastic behaviour in this case.

$$
\begin{gathered}
x=f_{\lambda}(x)=\lambda x(1-x) \quad \Leftrightarrow \quad x=0,1-\frac{1}{\lambda} \\
f_{\lambda}^{\prime}(x)=\lambda-2 \lambda x=\lambda, 2-\lambda
\end{gathered}
$$

$\lambda=2.8$

Dependence on parameter value

The parameter λ in $f_{\lambda}(x)=\lambda x(1-x)$ ranges from 0 to 4.

- When $\lambda=4$, expansion beats contraction for typical orbits.
- For $0 \leq \lambda \leq 3$, there is an attracting fixed point (contraction wins). No stochastic behaviour in this case.

$$
\begin{gathered}
x=f_{\lambda}(x)=\lambda x(1-x) \quad \Leftrightarrow \quad x=0,1-\frac{1}{\lambda} \\
f_{\lambda}^{\prime}(x)=\lambda-2 \lambda x=\lambda, 2-\lambda
\end{gathered}
$$

What happens for $3<\lambda<4$? Which is dominant, expansion or contraction?

Dependence on parameter value

The parameter λ in $f_{\lambda}(x)=\lambda x(1-x)$ ranges from 0 to 4.

- When $\lambda=4$, expansion beats contraction for typical orbits.
- For $0 \leq \lambda \leq 3$, there is an attracting fixed point (contraction wins). No stochastic behaviour in this case.

$$
\begin{gathered}
x=f_{\lambda}(x)=\lambda x(1-x) \quad \Leftrightarrow \quad x=0,1-\frac{1}{\lambda} \\
f_{\lambda}^{\prime}(x)=\lambda-2 \lambda x=\lambda, 2-\lambda
\end{gathered}
$$

What happens for $3<\lambda<4$? Which is dominant, expansion or contraction?

Dependence on parameter value

The parameter λ in $f_{\lambda}(x)=\lambda x(1-x)$ ranges from 0 to 4.

- When $\lambda=4$, expansion beats contraction for typical orbits.
- For $0 \leq \lambda \leq 3$, there is an attracting fixed point (contraction wins). No stochastic behaviour in this case.

$$
\begin{gathered}
x=f_{\lambda}(x)=\lambda x(1-x) \quad \Leftrightarrow \quad x=0,1-\frac{1}{\lambda} \\
f_{\lambda}^{\prime}(x)=\lambda-2 \lambda x=\lambda, 2-\lambda
\end{gathered}
$$

What happens for $3<\lambda<4$? Which is dominant, expansion or contraction?

Dependence on parameter value

The parameter λ in $f_{\lambda}(x)=\lambda x(1-x)$ ranges from 0 to 4.

- When $\lambda=4$, expansion beats contraction for typical orbits.
- For $0 \leq \lambda \leq 3$, there is an attracting fixed point (contraction wins). No stochastic behaviour in this case.

$$
\begin{gathered}
x=f_{\lambda}(x)=\lambda x(1-x) \quad \Leftrightarrow \quad x=0,1-\frac{1}{\lambda} \\
f_{\lambda}^{\prime}(x)=\lambda-2 \lambda x=\lambda, 2-\lambda
\end{gathered}
$$

What happens for $3<\lambda<4$? Which is dominant, expansion or contraction?

Dependence on parameter value

The parameter λ in $f_{\lambda}(x)=\lambda x(1-x)$ ranges from 0 to 4.

- When $\lambda=4$, expansion beats contraction for typical orbits.
- For $0 \leq \lambda \leq 3$, there is an attracting fixed point (contraction wins). No stochastic behaviour in this case.

$$
\begin{gathered}
x=f_{\lambda}(x)=\lambda x(1-x) \quad \Leftrightarrow \quad x=0,1-\frac{1}{\lambda} \\
f_{\lambda}^{\prime}(x)=\lambda-2 \lambda x=\lambda, 2-\lambda
\end{gathered}
$$

What happens for $3<\lambda<4$? Which is dominant, expansion or contraction?

Classification of behaviour

At least two types of behaviour:
(1) Attracting periodic orbit: $f^{p}(x)=x$ and $f^{n}(y) \rightarrow \mathcal{O}(x)$ for Leb-a.e. y
(2) Absolutely continuous invariant measure: $\mu \ll \operatorname{Leb}, \mu \circ f^{-1}=\mu$, and

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \varphi\left(f^{k} y\right)=\int \varphi(x) d \mu(x)
$$

for Leb-a.e. y and every $\varphi \in C([0,1])$

$$
\begin{array}{ll}
S=\{\lambda \in[3,4] \mid \text { periodic attractor }\} & \text { (stable behaviour) } \\
U=\{\lambda \in[3,4] \mid \text { acim }\} & \text { (unstable behaviour) }
\end{array}
$$

Classification of behaviour

At least two types of behaviour:
(1) Attracting periodic orbit: $f^{p}(x)=x$ and $f^{n}(y) \rightarrow \mathcal{O}(x)$ for Leb-a.e. y
(2) Absolutely continuous invariant measure: $\mu \ll \operatorname{Leb}, \mu \circ f^{-1}=\mu$, and

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \varphi\left(f^{k} y\right)=\int \varphi(x) d \mu(x)
$$

for Leb-a.e. y and every $\varphi \in C([0,1])$

$$
\begin{array}{ll}
S=\{\lambda \in[3,4] \mid \text { periodic attractor }\} & \text { (stable behaviour) } \\
U=\{\lambda \in[3,4] \mid \text { acim }\} & \text { (unstable behaviour) }
\end{array}
$$

- S is open and dense... complement is a Cantor set
- U has positive Lebesgue measure despite being nowhere dense

Bifurcations

- $\lambda<3$: one attracting fixed point, no periodic orbits
- $3<\lambda<3+\epsilon$: fixed point is repelling, period-2 orbit is attracting

$\lambda=0.5$

There is a bifurcation at $\lambda=3$ - qualitative behaviour changes
Another bifurcation happens at $\lambda \approx 3.45$:

- Period-2 orbit becomes unstable
- A stable period-4 orbit is created

Sometime before $\lambda \approx 3.56$ the period- 4 orbit becomes unstable and spawns a period-8 orbit...

Bifurcations

- $\lambda<3$: one attracting fixed point, no periodic orbits
- $3<\lambda<3+\epsilon$: fixed point is repelling, period-2 orbit is attracting

$\lambda=1$
There is a bifurcation at $\lambda=3$ - qualitative behaviour changes
Another bifurcation happens at $\lambda \approx 3.45$:
- Period-2 orbit becomes unstable
- A stable period-4 orbit is created

Sometime before $\lambda \approx 3.56$ the period- 4 orbit becomes unstable and spawns a period-8 orbit...

Bifurcations

- $\lambda<3$: one attracting fixed point, no periodic orbits
- $3<\lambda<3+\epsilon$: fixed point is repelling, period-2 orbit is attracting

$$
\lambda=1.5
$$

There is a bifurcation at $\lambda=3$ - qualitative behaviour changes
Another bifurcation happens at $\lambda \approx 3.45$:

- Period-2 orbit becomes unstable
- A stable period-4 orbit is created

Sometime before $\lambda \approx 3.56$ the period- 4 orbit becomes unstable and spawns a period-8 orbit...

Bifurcations

- $\lambda<3$: one attracting fixed point, no periodic orbits
- $3<\lambda<3+\epsilon$: fixed point is repelling, period-2 orbit is attracting

There is a bifurcation at $\lambda=3$ - qualitative behaviour changes
Another bifurcation happens at $\lambda \approx 3.45$:

- Period-2 orbit becomes unstable
- A stable period-4 orbit is created

Sometime before $\lambda \approx 3.56$ the period- 4 orbit becomes unstable and spawns a period-8 orbit...

Bifurcations

- $\lambda<3$: one attracting fixed point, no periodic orbits
- $3<\lambda<3+\epsilon$: fixed point is repelling, period-2 orbit is attracting

$$
\lambda=2.5
$$

There is a bifurcation at $\lambda=3$ - qualitative behaviour changes
Another bifurcation happens at $\lambda \approx 3.45$:

- Period-2 orbit becomes unstable
- A stable period-4 orbit is created

Sometime before $\lambda \approx 3.56$ the period- 4 orbit becomes unstable and spawns a period-8 orbit...

Bifurcations

- $\lambda<3$: one attracting fixed point, no periodic orbits
- $3<\lambda<3+\epsilon$: fixed point is repelling, period-2 orbit is attracting

There is a bifurcation at $\lambda=3$ - qualitative behaviour changes
Another bifurcation happens at $\lambda \approx 3.45$:

- Period-2 orbit becomes unstable
- A stable period-4 orbit is created

Sometime before $\lambda \approx 3.56$ the period- 4 orbit becomes unstable and spawns a period-8 orbit...

Bifurcations

- $\lambda<3$: one attracting fixed point, no periodic orbits
- $3<\lambda<3+\epsilon$: fixed point is repelling, period-2 orbit is attracting

$\lambda=3$
There is a bifurcation at $\lambda=3$ - qualitative behaviour changes
Another bifurcation happens at $\lambda \approx 3.45$:
- Period-2 orbit becomes unstable
- A stable period-4 orbit is created

Sometime before $\lambda \approx 3.56$ the period- 4 orbit becomes unstable and spawns a period-8 orbit...

Bifurcations

- $\lambda<3$: one attracting fixed point, no periodic orbits
- $3<\lambda<3+\epsilon$: fixed point is repelling, period-2 orbit is attracting

$$
\lambda=3.2
$$

There is a bifurcation at $\lambda=3$ - qualitative behaviour changes
Another bifurcation happens at $\lambda \approx 3.45$:

- Period-2 orbit becomes unstable
- A stable period-4 orbit is created

Sometime before $\lambda \approx 3.56$ the period- 4 orbit becomes unstable and spawns a period-8 orbit...

Bifurcations

- $\lambda<3$: one attracting fixed point, no periodic orbits
- $3<\lambda<3+\epsilon$: fixed point is repelling, period-2 orbit is attracting

$$
\lambda=3.5
$$

There is a bifurcation at $\lambda=3$ - qualitative behaviour changes
Another bifurcation happens at $\lambda \approx 3.45$:

- Period-2 orbit becomes unstable
- A stable period-4 orbit is created

Sometime before $\lambda \approx 3.56$ the period- 4 orbit becomes unstable and spawns a period-8 orbit...

Bifurcations

- $\lambda<3$: one attracting fixed point, no periodic orbits
- $3<\lambda<3+\epsilon$: fixed point is repelling, period-2 orbit is attracting

$$
\lambda=3.56
$$

There is a bifurcation at $\lambda=3$ - qualitative behaviour changes
Another bifurcation happens at $\lambda \approx 3.45$:

- Period-2 orbit becomes unstable
- A stable period-4 orbit is created

Sometime before $\lambda \approx 3.56$ the period- 4 orbit becomes unstable and spawns a period-8 orbit...

Bifurcations

- $\lambda<3$: one attracting fixed point, no periodic orbits
- $3<\lambda<3+\epsilon$: fixed point is repelling, period-2 orbit is attracting

$\lambda=3.8$

There is a bifurcation at $\lambda=3$ - qualitative behaviour changes
Another bifurcation happens at $\lambda \approx 3.45$:

- Period-2 orbit becomes unstable
- A stable period-4 orbit is created

Sometime before $\lambda \approx 3.56$ the period- 4 orbit becomes unstable and spawns a period-8 orbit...

Bifurcations

- $\lambda<3$: one attracting fixed point, no periodic orbits
- $3<\lambda<3+\epsilon$: fixed point is repelling, period-2 orbit is attracting

There is a bifurcation at $\lambda=3$ - qualitative behaviour changes
Another bifurcation happens at $\lambda \approx 3.45$:

- Period-2 orbit becomes unstable
- A stable period-4 orbit is created

Sometime before $\lambda \approx 3.56$ the period- 4 orbit becomes unstable and spawns a period-8 orbit...

Period doubling cascades and universality

At λ_{n}, period 2^{n} orbit becomes unstable, period 2^{n+1} orbit is born: this is a Period doubling cascade
$\lambda_{n} \rightarrow \lambda_{\infty} \approx 3.569946 \ldots$

Period doubling cascades and universality

At λ_{n}, period 2^{n} orbit becomes unstable, period 2^{n+1} orbit is born: this is a Period doubling cascade
$\lambda_{n} \rightarrow \lambda_{\infty} \approx 3.569946 \ldots$
It turns out that $\lambda_{\infty}-\lambda_{n} \approx C \delta^{n}$, where $\delta \approx 1 / 4.6692 \ldots$ is the Feigenbaum constant.

Universality

This applies to a very large class of one-parameter families f_{λ}, not just the logistic maps.

Windows of stability

Contraction beats expansion for $\lambda<\lambda_{\infty}$.

- What happens for $\lambda>\lambda_{\infty}$?

Sometimes expansion wins (there is an acip and chaos), but there are windows of stability where f_{λ} has an attracting periodic orbit.

$\lambda=3.815$

These windows of stability are dense in $[0,4]$

Windows of stability

Contraction beats expansion for $\lambda<\lambda_{\infty}$.

- What happens for $\lambda>\lambda_{\infty}$?

Sometimes expansion wins (there is an acip and chaos), but there are windows of stability where f_{λ} has an attracting periodic orbit.

$\lambda=3.825$

These windows of stability are dense in $[0,4]$

Windows of stability

Contraction beats expansion for $\lambda<\lambda_{\infty}$.

- What happens for $\lambda>\lambda_{\infty}$?

Sometimes expansion wins (there is an acip and chaos), but there are windows of stability where f_{λ} has an attracting periodic orbit.

$\lambda=3.835$

These windows of stability are dense in $[0,4]$

Windows of stability

Contraction beats expansion for $\lambda<\lambda_{\infty}$.

- What happens for $\lambda>\lambda_{\infty}$?

Sometimes expansion wins (there is an acip and chaos), but there are windows of stability where f_{λ} has an attracting periodic orbit.

$\lambda=3.815$

These windows of stability are dense in $[0,4]$

Theorem: If there is a period-3 orbit then there are orbits of all periods.

Windows of stability

Contraction beats expansion for $\lambda<\lambda_{\infty}$.

- What happens for $\lambda>\lambda_{\infty}$?

Sometimes expansion wins (there is an acip and chaos), but there are windows of stability where f_{λ} has an attracting periodic orbit.

$$
\lambda=3.825
$$

These windows of stability are dense in $[0,4]$

Theorem: If there is a period-3 orbit then there are orbits of all periods.

Windows of stability

Contraction beats expansion for $\lambda<\lambda_{\infty}$.

- What happens for $\lambda>\lambda_{\infty}$?

Sometimes expansion wins (there is an acip and chaos), but there are windows of stability where f_{λ} has an attracting periodic orbit.

$\lambda=3.835$

These windows of stability are dense in $[0,4]$

Theorem: If there is a period-3 orbit then there are orbits of all periods.

More on windows of stability

$$
1 \prec 2 \prec 4 \prec 8 \prec 16 \prec \ldots
$$

Periodic orbits appear in an order given by the Sharkovsky ordering:

$$
\cdots \prec 7 \cdot 2^{n} \prec 5 \cdot 2^{n} \prec 3 \cdot 2^{n}
$$

$$
\begin{aligned}
& \cdots \prec 7 \cdot 2 \prec 5 \cdot 2 \prec 3 \cdot 2 \\
& \cdots \prec 7 \prec 5 \prec 3
\end{aligned}
$$

Each window of stability has its own period doubling cascade. Self-similarity - a fractal sort of behaviour

Universality constants are same as before.

Types of chaotic behaviour

Uniform expansion (doubling map):

- Phase space expanded at every point
- Along an orbit, expansion at every time
- Stable under perturbations

$\lambda=3.8$ Non-uniform expansion (logistic map):
- Some expansion, some contraction
- Along an orbit, contraction may occur but expansion wins asymptotically
- Very sensitive to perturbations

Higher dimensional (Lorenz equations):

- Some directions expand and others contract
- Expansion and contraction may be uniform or non-uniform

Higher dimensions

Mechanism for chaos is stretching and folding of the phase space.

Formally, given a diffeomorphism $f: M \emptyset$ of a smooth Riemannian manifold M, need a splitting of the tangent bundle:

$$
T_{x} M=E^{u}(x) \oplus E^{s}(x)
$$

- Invariance: $D f_{x} E^{u}(x)=E^{u}(f(x))$ and $D f_{x} E^{s}(x)=E^{s}(f(x))$
- Expansion in $E^{u}(x)$ and contraction in $E^{s}(x)$

Key step: Integrate $E^{s, u}$ to stable and unstable manifolds $W^{s, u} \subset M$.

