Introduction	Non-uniform specification	Towers	Further directions

Tower constructions and specification properties

Vaughn Climenhaga University of Houston

July 8, 2014

Introduction ●0000	Non-uniform specification	Towers 0000	Further directions
Overview			

Goal: Study equilibrium states in non-uniform hyperbolicity

For now: Study measure of maximal entropy in symbolic dynamics

	system (X, σ)	MME μ
Known:	finite alphabet	existence
	specification	uniqueness
	mixing SFT	statistical properties

"statistical properties" $\begin{cases} (X, \psi \circ \sigma^n, \mu) \text{ has exponential decay of } \\ \text{correlations, central limit theorem, etc.} \end{cases}$

Also comes from "tower with exponential tails": non-uniform

Questions:

• Specification \Rightarrow EDC, CLT? Non-uniform specification?

Introduction 00000	Non-uniform specification	Towers 0000	Further directions
Shift spaces			

Shift space: closed, shift-invariant set $X \subset A^{\mathbb{Z}}$ A =finite set

• Language: $\begin{cases} \mathcal{L}_n = \{ w \in A^n \mid w \text{ appears in some } x \in X \} \\ \mathcal{L} = \bigcup_{n \ge 0} \mathcal{L}_n \end{cases}$

• Entropy of X is $h(\mathcal{L}) = \lim_{n \to \infty} \frac{1}{n} \log \# \mathcal{L}_n$

Variational principle: h(L) = sup{h(μ) | μ shift-inv. on X}

S-gap shifts: Fix $S \subset \{0, 1, 2, \dots, \}$, let $X = \overline{\{0^n 1 \mid n \in S\}^{\mathbb{Z}}}$

Introduction 00000	Non-uniform specification	Towers 0000	Further directions
Torretation			
I ransitivity	and specification		

Transitive \Leftrightarrow for all $u, v \in \mathcal{L}$ there exists $w \in \mathcal{L}$ s.t. $uwv \in \mathcal{L}$

 X has specification if there exists τ ∈ N such that w can be chosen with |w| ≤ τ, independently of the length of u, v

Transitive SFTs have specification. What about non-SFTs?

S-gap shifts are transitive for every S

• Specification $\Leftrightarrow S$ has bounded gaps (syndetic)

(If $n, n+1, \ldots, n+t \notin S$ then 10^n must be followed by 0^t)

Introduction	Non-uniform specification	Towers	Further directions
00000	000	0000	0000

Uniqueness and statistical properties

$$\mu$$
 is Gibbs if $K \leq \frac{\mu[w]}{e^{-nh(\mathcal{L})}} \leq K'$ for all $w \in \mathcal{L}_n$

Theorem (Bowen 1974)

If X has specification, then it has a unique MME μ , and μ is Gibbs.

 (X, σ, μ) has exponential decay of correlations on a class of functions \mathcal{F} if there is $\gamma < 1$ s.t. $\forall \varphi, \psi \in \mathcal{F} \exists C = C(\varphi, \psi)$ s.t. $|\int (\varphi \circ \sigma^n) \psi \, d\mu - \int \varphi \, d\mu \int \psi \, d\mu| \leq C \gamma^n$

Theorem (Ruelle 1968, 1976, Sinai 1972)

If X is a mixing SFT and μ its unique MME then (X, σ, μ) has exponential decay of correlations and the CLT.

Question: Does specification imply EDC and/or CLT?

Introduction	Non-uniform specification	Towers	Further directions
00000			

Towers with exponential tails

S-gap shifts not covered by previous slide. Can study using towers.

- $G = \{0^n 1 \mid n \in S\}$, so $G^{\mathbb{Z}} \subset X$ (indeed, $X = \overline{G^{\mathbb{Z}}}$)
- μ ergodic and $\mu \neq \delta_{\overline{0}} \Rightarrow \mu(G^{\mathbb{Z}}) = 1$

Tower is $\Omega = \{(\underline{w}, n) \in G^{\mathbb{Z}} \times \mathbb{N} \mid n \leq R(\underline{w})\}$ $(R(\underline{w}) = |w_0|)$ • $F: \Omega \to \Omega$ given by $F(\underline{w}, n) = \begin{cases} (\underline{w}, n+1) & n < |w_0| \\ (\sigma(\underline{w}), 1) & n = |w_0| \end{cases}$

• Get unique MME μ with exp. tails: $\mu\{R \ge n\} \le C\gamma^n \ (\gamma < 1)$

Young 1998: Guarantees exponential decay of correlations, CLT

Introduction 00000	Non-uniform specification ●00	Towers 0000	Further directions	
Collections of would				

 $\mathcal{G} \subset \mathcal{L}$ has specification if there exists $\tau \in \mathbb{N}$ such that for all $u, v \in \mathcal{G}$, there exists $w \in \mathcal{L}$ with $|w| \leq \tau$ such that $uwv \in \mathcal{G}$.

CLIOHS OF

worus

• X_S: take $\mathcal{G} = \{$ words starting and ending at base vertex $\}$

More generally, if K is a finite set of vertices, take
G(K) = {words starting and ending at vertices in K}

 μ has the Gibbs property on \mathcal{G} if there are K, K' > 0 such that for all $w \in \mathcal{G}_n$ we have $K \leq \frac{\mu[w]}{e^{-n\hbar(\mathcal{L})}} \leq K'$.

Introduction 00000	Non-uniform specification	Towers 0000	Further directions
Decomposit	ions		

Idea: Unique MME if specification on "large enough" $\mathcal{G} \subset \mathcal{L}$

What does "large enough" mean?

Decomposition of \mathcal{L} : sets $\mathcal{C}^{p}, \mathcal{G}, \mathcal{C}^{s} \subset \mathcal{L}$ such that $\mathcal{L} = \mathcal{C}^{p}\mathcal{G}\mathcal{C}^{s}$.

$$\mathcal{G}^{M} = \{ uvw \in \mathcal{L} \mid u \in \mathcal{C}^{p}, v \in \mathcal{G}, w \in \mathcal{C}^{s}, |u|, |w| \leq M \}$$

Write $h(\mathcal{C}^p \cup \mathcal{C}^s) := \overline{\lim} \frac{1}{n} \log \#(\mathcal{C}^p_n \cup \mathcal{C}^s_n)$ (entropy of obstructions)

Theorem (C.–Thompson, 2012)

Suppose $\mathcal{L}(X)$ has a decomposition such that

- G^M has specification for every M
- $h(\mathcal{C}^p \cup \mathcal{C}^s) < h(\mathcal{L})$

Then X has a unique MME μ . It is Gibbs on each \mathcal{G}^M .

00000	000	0000	0000
Evennelar C	was abilitie		

- Example: *S*-gap shifts
 - $\mathcal{C}^{\textit{p}}$: paths only reaching origin at last step, or never
 - $\ensuremath{\mathcal{G}}$: paths starting and ending at origin
 - \mathcal{C}^{s} : paths starting at origin and never returning

- $\mathcal{L} = \mathcal{C}^{p} \mathcal{G} \mathcal{C}^{s}$
- \mathcal{G}^{M} : paths starting and ending in finite part of graph
- $h(\mathcal{C}^p \cup \mathcal{C}^s) = 0$

Passes to factors: every subshift factor of an *S*-gap shift has a unique MME. Same result for β -shifts.

Introduction 00000	Non-uniform specification	Towers ●000	Further directions

Synchronised and coded shifts

 $\mathsf{Well}\text{-}\mathsf{known: specification} \Rightarrow \mathsf{synchronised} \Rightarrow \mathsf{coded}$

Synchronised: $\exists v \in \mathcal{L}$ such that $uv \in \mathcal{L}, vw \in \mathcal{L} \Rightarrow uvw \in \mathcal{L}$

Coded: there exists $G \subset \mathcal{L}$ such that $X = \overline{G^{\mathbb{Z}}}$

• Equivalent: strongly connected countable graph presentation

Proof that synchronised \Rightarrow coded: $G = \{vu \mid vuv \in \mathcal{L}\}$

• Next slides: spec \Rightarrow sync (\Rightarrow coded) \Rightarrow tower

Dynamical interpretation: $x.v\Box \leftrightarrow W^u(x.vz)$, $\Box.vy \leftrightarrow W^s(\hat{z}.vy)$

- Synchronised: local product structure on [v] for some v
- Markov: local product structure on [v] for all (suff. long) v

Introduction 00000	Non-uniform specification	Towers o●oo	Further directions
A synchronising	g word		

Specification \Rightarrow synchronised (Bertrand 1988). Given $u, w \in \mathcal{L}$, let

 $C(u,w) = \{y \in \mathcal{L} \mid uyw \in \mathcal{L}, |y| \leq \tau\}.$

Specification implies non-empty.

- Start with any u, w. Note that $C(\Box u, w\Box) \subset C(u, w)$.
- Extend to $\Box u$ and $w \Box$ such that $C(\Box u, w \Box) \neq C(u, w)$.
- Iterate. C(u, w) finite \Rightarrow process terminates.
- Let v = uyw for some $y \in C(u, w) = C(\Box u, w\Box)$

Claim: v is a synchronising word

• $av \in \mathcal{L}, vb \in \mathcal{L} \Rightarrow auyw \in \mathcal{L}, uywb \in \mathcal{L}$

• By choice of u, w, get $y \in C(au, wb)$, so $avb = auywb \in \mathcal{L}$

Introduction 00000	Non-uniform specification	Towers 00●0	Further directions
Towers from	concification		

Specification \Rightarrow unique MME μ

Also implies synchronised, hence coded with $G = \{vu \mid vuv \in \mathcal{L}\}$

• μ -a.e. x has v occur infinitely often, hence $\mu(G^{\mathbb{Z}}) = 1$

- $\{R \ge n\} \subset \{x \mid x_k \cdots x_{k+n} \not\supseteq v\}$ (k = |v|)
- this set of words grows like $e^{nh'}$ for $h' < h(\mathcal{L})$
- Gibbs property $\Rightarrow \mu\{R \ge n\} \le Ke^{nh'}e^{-nh(\mathcal{L})} \Rightarrow \exp$. tail

Theorem (C. 2013)

If X is a shift with specification on a finite alphabet and μ is the unique MME, then μ has EDC and CLT.

Introduction 00000	Non-uniform specification	Towers 000●	Further directions
Non-uniform	specification		

Theorem (C. 2014)

Let X be a shift with a decomposition $\mathcal{L} = \mathcal{C}^{p}\mathcal{G}\mathcal{C}^{s}$ s.t.

- G has specification;
- $\ 2 \ h(\mathcal{C}^p \cup \mathcal{C}^s) < h(\mathcal{L});$

Then X has a unique MME μ , and (X, σ, μ) has a tower with exponential tails. In particular, μ has EDC and CLT.

Proof follows similar idea, but X need not be synchronised.

 Get a word y that synchronises G, not L, then build tower around 'good' returns to [y], instead of all returns.

Application: every subshift factor of an S-gap shift or a β -shift has a unique MME with EDC and CLT

Introduction	Non-uniform specification	Towers	Further directions
00000		0000	●000

Non-zero potentials

Given a potential function $\varphi \colon X \to \mathbb{R}$, an equilibrium state is an invariant μ maximising $h(\mu) + \int \varphi \, d\mu$.

Theorem (C.–Thompson 2013)

Let X be a shift space on a finite alphabet and $\varphi \colon X \to \mathbb{R}$ be Hölder. Suppose $\mathcal{L}(X)$ has a decomposition $\mathcal{C}^p \mathcal{G} \mathcal{C}^s$ such that

 $\ \, \bullet \ \, {\cal G}^{\cal M} \ \, has \ \, {\rm specification} \ \, {\rm for} \ \, {\rm every} \ \, M$

$$P(\mathcal{C}^p \cup \mathcal{C}^s, \varphi) < P(\mathcal{L}, \varphi)$$

Then φ has a unique ES μ . It is Gibbs (for φ) on each \mathcal{G}^M .

Theorem (C. 2014)

If \mathcal{G} has the additional property that

• $(uvw \in \mathcal{L}, uv \in \mathcal{G}, vw \in \mathcal{G}) \Rightarrow uvw \in \mathcal{G}$

then (X, μ) has a tower with exp. tails, so μ has EDC and the CLT.

Introduction	Non-uniform specification	Towers	Further directions
			0000

Verifying the pressure gap

Verifying $P(\mathcal{C}, \varphi) < P(\mathcal{L}, \varphi)$ is more difficult when $\varphi \neq 0$

Example (Conrad 2013)

Let
$$X = \overline{\{0^n 1^n \mid n \in \mathbb{N}\}^{\mathbb{Z}}}$$
 and $\varphi = t\chi_{[1]}$. Then

- $\mathcal{L}(X)$ has a decomposition with $h(\mathcal{C}^p \cup \mathcal{C}^s) < h(\mathcal{L})$
- for large t, δ_1 is the unique ES for $t\varphi$
- there is t_0 such that $t_0\varphi$ has multiple equilibrium states

Theorem (C.–Thompson 2013)

If X is an S-gap shift or a β -shift then there is a decomposition $\mathcal{L}(X) = \mathcal{C}^{p}\mathcal{GC}^{s}$ such that every Hölder continuous potential has $P(\mathcal{C}^{p} \cup \mathcal{C}^{s}, \varphi) < P(\mathcal{L}, \varphi).$

Methods are very ad hoc. Not clear how to generalise.

Introduction 00000	Non-uniform specification	Towers 0000	Further directions 00●0	
he non-symbolic setting				

Similar results hold for non-symbolic systems: X a compact metric space, $f: X \to X$ continuous, $\varphi: X \to \mathbb{R}$ continuous.

Replace \mathcal{L} with $X \times \mathbb{N}$ (space of finite orbit segments)

$$(x, n) \iff x, f(x), f^2(x), \ldots, f^{n-1}(x)$$

Ask for $\mathcal{C}^p, \mathcal{G}, \mathcal{C}^s \subset X \times \mathbb{N}$ such that

- every (x, n) has $p, g, s \in \mathbb{N}_0$ such that p + g + s = n, $(x, p) \in \mathcal{C}^p$, $(f^p x, g) \in \mathcal{G}$, and $(f^{p+g} x, s) \in \mathcal{C}^s$
- every \mathcal{G}^M has specification
- φ has the Bowen property on ${\mathcal G}$
- $P(\mathcal{C}^p \cup \mathcal{C}^s, \varphi) < P(X, \varphi)$

Together with weak expansivity condition, this gives uniqueness.

Introduction	Non-uniform specification	Towers	Further directions
00000		0000	000●

Other applications

Theorem (C.–Fisher–Thompson 2014)

For every Hölder continuous $\varphi \colon \mathbb{T}^4 \to \mathbb{R}$ there is a C^1 -open set of diffeos $f \colon \mathbb{T}^4 \to \mathbb{T}^4$ (given by Bonatti and Viana) such that

- f has a dominated splitting but is not partially hyperbolic
- $(\mathbb{T}^4, f, \varphi)$ has a unique equilibrium state

 $T_{x}\mathbb{T}^{4}$ splits into non-uniformly expanding and contracting E^{u} , E^{s} .

Similar approach works for geodesic flow on rank one manifolds of non-positive curvature (Burns-C.-Fisher-Thompson, in progress)