Introduction	Uniqueness	Large deviations	Towers	Non-symbolic systems
000000	0000000		00000	000

Non-uniform specification, thermodynamic formalism, and towers

Vaughn Climenhaga University of Houston

December 2, 2013

Includes joint work with Daniel J. Thompson (Ohio State) and Kenichiro Yamamoto (Tokyo Denki University)

Introduction	Uniqueness	Large deviations	Towers	Non-symbolic systems
000000	0000000	000000	00000	
The tells	to an eliste			

I he talk in one slide

Goal: Hyperbolicity ~> equilibrium states / SRB measures

- Existence, uniqueness

• Statistical properties { decay of correlations, CLT large deviations, multifractal

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ ● ● ●

Known:

- Markov partition \Rightarrow all of these
- Non-uniform version of Markov partition ~> towers
- Specification \Rightarrow some of these

Questions:

• Specification \Rightarrow EDC, CLT? Non-uniform specification?

Answers:

- Non-uniform specification \Rightarrow uniqueness, large deviations
- (NU) specification \Rightarrow tower

Introduction ●00000	Uniqueness 0000000	Large deviations	Towers 00000	Non-symbolic systems
General set	ting			

- X a compact metric space, $f: X \to X$ continuous
- $\mathcal{M} = \{ \text{Borel probability measures on } X \}$
 - $\mathcal{M}_f = \{f \text{-invariant}\}, \ \mathcal{M}_f^e = \{\text{ergodic}\}$
- $\varphi \in C(X) \quad \rightsquigarrow \quad P(\varphi) = \sup\{h(\mu) + \int \varphi \, d\mu \mid \mu \in \mathcal{M}_f\}$
 - Topological pressure, also admits definition as dimension
 - Supremum achieved by equilibrium state
 - SRB (physical) measures are equilibrium states for $-\log J^u$

Expansive \Rightarrow equilibrium states exist

• For now, assume expansive (weaken this assumption later)

Introduction ○●○○○○	Uniqueness 0000000	Large deviations	Towers 00000	Non-symbolic systems
Shift spaces	;			

Shift space: closed, shift-invariant set $X \subset A^{\mathbb{N}}$

• $A = \{1, \dots, p\}$ a finite alphabet

Every finite word $w \in A^* = \bigcup_{n>0} A^n$ determines a cylinder

$$[w] = \{x \in X \mid x_1 \cdots x_n = w\} \qquad (n = |w|)$$

The language of X is $\mathcal{L} = \{ w \in A^* \mid [w] \neq \emptyset \}.$

Transitive \Leftrightarrow for all $u, v \in \mathcal{L}$ there exists $w \in \mathcal{L}$ s.t. $uwv \in \mathcal{L}$

 X has specification if there exists τ ∈ N such that w can be chosen with |w| ≤ τ, independently of the length of u, v

Introduction	Uniqueness	Large deviations	Towers	Non-symbolic systems
000000	0000000		00000	000
Pressure as	s growth ra	ate		

Given $\mathcal{D} \subset \mathcal{L}$ and $\varphi \in C(X)$, partition sums for \mathcal{D}, φ are

$$\Lambda_n(\mathcal{D},\varphi) = \sum_{w\in\mathcal{D}_n} e^{\varphi_n(w)},$$

where $\mathcal{D}_n = \{ w \in \mathcal{D} \mid |w| = n \}$ and $\varphi_n(w) = \sup_{x \in [w]} S_n \varphi(x)$.

 $S_n\varphi(x) = \varphi(x) + \varphi(\sigma x) + \cdots + \varphi(\sigma^{n-1}x)$

Variational principle: $P(\varphi) = \lim_{n \to \infty} \frac{1}{n} \log \Lambda_n(\mathcal{L}, \varphi)$

• For $\mathcal{D} \subset \mathcal{L}$, also consider $P(\mathcal{D}, \varphi) = \overline{\lim}_{n \to \infty} \frac{1}{n} \log \Lambda_n(\mathcal{D}, \varphi)$.

Introduction 000●00	Uniqueness 0000000	Large deviations	Towers 00000	Non-symbolic systems

Unique equilibrium states

 φ has bounded distortions if there exists $V \in \mathbb{R}$ such that

$$|S_n \varphi(x) - S_n \varphi(y)| \le V$$
 for all $w \in \mathcal{L}, x, y \in [w]$ $(n = |w|)$

 $\mu \in \mathcal{M}_{\sigma}(X)$ is Gibbs if there are K, K' > 0 such that

$$\mathcal{K} \leq rac{\mu[w]}{e^{-nP(arphi)+S_narphi(x)}} \leq \mathcal{K}'$$

for all $w \in \mathcal{L}$, n = |w|, $x \in [w]$.

Theorem (Bowen, 1974)

If X has specification and φ has bounded distortions, then φ has a unique equilibrium state μ , and μ has the Gibbs property.

Introduction 0000€0	Uniqueness 0000000	Large deviations	Towers 00000	Non-symbolic systems
Large dev	viations			

•
$$(x, n) \in X \times \mathbb{N} \rightsquigarrow$$
 empirical measure $\mathcal{E}_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} \delta_{\sigma^k x}$

 $m\in \mathcal{M}$ has large deviations principle with rate $q\colon \mathcal{M}\to [-\infty,0]$ if

$$U \subset \mathcal{M} \text{ open } \Rightarrow \liminf_{n \to \infty} \frac{1}{n} \log m\{x \mid \mathcal{E}_n(x) \in U\} \ge \sup_{\mu \in U} q(\mu)$$

and similar upper bound on lim sup when U closed.

Theorem (Young, 1990)

If X has specification and m is Gibbs for φ , then X satisfies a large deviations principle with reference measure m and rate function

$$q(\mu) = \begin{cases} h(\mu) + \int \varphi \, d\mu - P(\varphi) & \mu \in \mathcal{M}_{\sigma}(X) \\ -\infty & \mu \notin \mathcal{M}_{\sigma}(X) \end{cases}$$

Introduction 00000●	Uniqueness 0000000	Large deviations	Towers 00000	Non-symbolic systems

Other statistical properties

 (X, σ, μ) has exponential decay of correlations on a class of functions \mathcal{F} if there is $\gamma < 1$ s.t. $\forall \varphi, \psi \in \mathcal{F} \exists C = C(\varphi, \psi)$ s.t.

$$\left|\int (\varphi \circ \sigma^n) \psi \, d\mu - \int \varphi \, d\mu \int \psi \, d\mu\right| \leq C \gamma^n$$

Question: Specification $\Rightarrow \mu_{\varphi}$ has EDC? What about CLT?

Known: Both follow if (X, σ, μ) has a tower with exponential tails

Revised question: Specification \Rightarrow a tower with exponential tails?

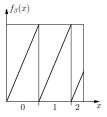
• Return to this after discussing non-uniform specification

Introduction 000000	Uniqueness •000000	Large deviations	Towers 00000	Non-symbolic systems
β -shifts				

For
$$\beta>1,\,\Sigma_{eta}$$
 is the coding space for the map

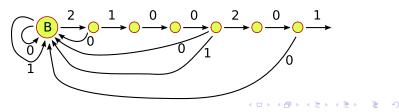
$$f_{\beta} \colon [0,1] \to [0,1], \qquad x \mapsto \beta x \pmod{1}$$

 $1_{eta} = a_1 a_2 \cdots$, where $1 = \sum_{n=1}^{\infty} a_n eta^{-n}$



 $\begin{array}{ll} \textbf{Fact:} & x \in \Sigma_\beta \Leftrightarrow \sigma^n x \preceq 1_\beta \text{ for all } n \\ & \Leftrightarrow x \text{ labels a walk starting at } \textbf{B} \text{ on this graph:} \end{array}$

(Here $1_{\beta} = 2100201...$)



Introduction 000000	Uniqueness o●ooooo	Large deviations	Towers 00000	Non-symbolic systems
Propertie	s of β -shifts			

 Σ_β has specification iff $1_\beta \not\supseteq$ arbitrarily long sequences of 0s

Schmeling (1997): For Leb-a.e. β , Σ_{β} does not have specification

Hofbauer (1979): Σ_{β} has a unique measure of maximal entropy

Walters (1978): Every Lipschitz potential has a unique eq. state

Equilibrium state is not Gibbs – so what about large deviations? And what about more general bounded distortion potentials?

Introduction 000000	Uniqueness 00●0000	Large deviations	Towers 00000	Non-symbolic systems
Collection	s of words			

 $\mathcal{D} \subset \mathcal{L}$ has specification if there exists $\tau \in \mathbb{N}$ such that for all $u, v \in \mathcal{D}$, there exists $w \in \mathcal{L}$ with $|w| \leq \tau$ such that $uwv \in \mathcal{L}$.

• Σ_{β} : $\mathcal{G} = \{ words \ starting \ and \ ending \ at \ B \} \ has \ specification$

 φ has bounded distortion on \mathcal{D} if there exists $V \in \mathbb{R}$ such that for all $w \in \mathcal{D}$, n = |w|, $x, y \in [w]$, we have $|S_n \varphi(x) - S_n \varphi(y)| \leq V$.

 μ has the Gibbs property on \mathcal{D} if there are K, K' > 0 such that for all $w \in \mathcal{D}$, $n = |w|, x \in [w]$, we have $K \leq \frac{\mu[w]}{e^{-nP(\varphi) + S_n\varphi(x)}} \leq K'$.

Introduction 000000	Uniqueness 000●000	Large deviations	Towers 00000	Non-symbolic systems
Decompo	sitions			

Idea: Unique ES if spec and bdd dist on "large enough" $\mathcal{G}\subset\mathcal{L}$ What does "large enough" mean?

Decomposition of \mathcal{L} : sets $\mathcal{C}^{p}, \mathcal{G}, \mathcal{C}^{s} \subset \mathcal{L}$ such that $\mathcal{L} = \mathcal{C}^{p}\mathcal{G}\mathcal{C}^{s}$.

$$\mathcal{G}^{M} = \{ uvw \in \mathcal{L} \mid u \in \mathcal{C}^{p}, v \in \mathcal{G}, w \in \mathcal{C}^{s}, |u|, |w| \leq M \}$$

Theorem (C.–Thompson, 2012)

Suppose \mathcal{L} has a decomposition such that

- $\textbf{0} \hspace{0.1 in} \varphi \hspace{0.1 in} \textit{has bounded distortion on } \mathcal{G}$
- **2** \mathcal{G}^M has specification for every M
- $P(\mathcal{C}^p \cup \mathcal{C}^s, \varphi) < P(\varphi)$

Then φ has a unique equilibrium state μ . It is Gibbs on each \mathcal{G}^{M} .

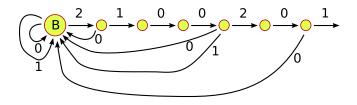
◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Introduction 000000	Uniqueness 0000●00	Large deviations	Towers 00000	Non-symbolic systems
Example:	eta-shift			

$$C^{p} = \emptyset$$

$$\mathcal{G} = \{ \text{words (paths) starting and ending at } B \}$$

$$\mathcal{C}^{s} = \{ \text{words (paths) starting at } B \text{ and never returning} \}$$



• $\mathcal{L} = \mathcal{C}^{p}\mathcal{G}\mathcal{C}^{s}$

• \mathcal{G}^M corresponds to paths ending in first M vertices, so \mathcal{G}^M has specification for each M

•
$$h(\mathcal{C}) = 0$$
, where $\mathcal{C} = \mathcal{C}^p \cup \mathcal{C}^s$

Introduction 000000	Uniqueness 00000●0	Large deviations	Towers 00000	Non-symbolic systems
Hölder po	otentials			

To get unique equilibrium state for φ , need $P(\mathcal{C}, \varphi) < P(\varphi)$.

Equivalent conditions: (hyperbolic potential)

- $\sup_x \overline{\lim} \frac{1}{n} S_n \varphi(x) < P(\varphi)$
- $\exists n \text{ such that } \sup_x \frac{1}{n}S_n\varphi(x) < P(\varphi)$
- Every equilibrium state for φ has $h(\mu) > 0$

Theorem (C.–Thompson, 2012)

When X is a β -shift, every Hölder continuous potential is hyperbolic. In particular, it has a unique equilibrium state μ , and μ is Gibbs on each \mathcal{G}^M .

Introduction 000000	Uniqueness 000000●	Large deviations	Towers 00000	Non-symbolic systems
Interval m	naps			

Let f be a piecewise expanding interval map, X the coding space

• Graph presentation gives decomposition: F a finite subset $\begin{cases}
\mathcal{C}^p = \text{paths entering } F \text{ only on last step, or never} \\
\mathcal{G} = \text{paths starting and ending in } F \\
\mathcal{C}^s = \text{paths starting in } F \text{ and never returning} \\
h(\mathcal{C}) > 0, \text{ but can be made arbitrarily small by taking } F \text{ large}
\end{cases}$

Unique equilibrium state for φ , Gibbs on each \mathcal{G}^M , if

• $\sup_x \overline{\lim} \frac{1}{n} S_n \varphi(x) < P(\varphi)$ (or other equiv. condition)

Question: Hölder \Rightarrow unique ES for all such interval maps?

• \exists shift space with h(C) = 0 but above properties fail (Conrad)

Introduction	Uniqueness	Large deviations	Towers	Non-symbolic systems
000000	0000000	●00000	00000	000
Statistical	concificatio	on properties		

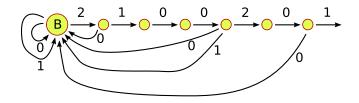
Statistical specification properties

Large deviations results have been obtained for β -shift and other systems by using statistical specification properties.

- Pfister, Sullivan (2005)
- Yamamoto (2009)
- Varandas (2012)

All reflect idea that the gluing procedure can be weakened in a way that does not interfere too much with Birkhoff averages.

Introduction	Uniqueness	Large deviations	Towers	Non-symbolic systems
000000	0000000	○●○○○○	00000	000
β -shifts				



Given any $v \in \mathcal{L}$, can transform v into a word $u \in \mathcal{G}$ by making a single change. (Change last non-zero symbol to 0).

Thus given any $v, w \in \mathcal{L}$, the word vw may not be in \mathcal{L} , but can be transformed into a word in \mathcal{L} by making a single change.

General method for getting a word that concatenates statistical properties of v and w, as long as $\frac{\text{number of changes}}{\text{length of word}} \rightarrow 0.$

Introduction 000000	Uniqueness 0000000	Large deviations	Towers 00000	Non-symbolic systems
Edit metri	C			

Goal: Define a metric on A^* (set of all finite words) that controls how much Birkhoff sums can vary.

An edit of a word w is any of the following:

- Substition: $w = uav \mapsto w' = ubv$ $u, v \in A^*, a, b \in A$
- Insertion: $w = uv \mapsto w' = ubv$ $u, v \in A^*, b \in A$
- Deletion: $w = uav \mapsto w' = uv$ $u, v \in A^*, a \in A$

 $\hat{d}(v, w) =$ minimum number of edits required to go from v to w.

Key property: Let D be a metric inducing the weak* topology on $\mathcal{M}(X)$. Then for every $\eta > 0$ there is $\delta > 0$ such that if $\frac{\hat{d}(v,w)}{|v|} < \delta$, then $D(\mathcal{E}_{|v|}(x), \mathcal{E}_{|w|}(y)) < \eta$ for all $x \in [v]$ and $y \in [w]$.

Introduction	Uniqueness	Large deviations	Towers	Non-symbolic systems
000000	0000000	000€00	00000	
Edit appr	oachability			

mistake function: a non-increasing sub-linear function $g: \mathbb{N} \to \mathbb{N}$. $(\frac{g(n)}{n} \to 0)$

 \mathcal{L} is edit approachable by $\mathcal{G} \subset \mathcal{L}$ if there exists a mistake function g such that for every $v \in \mathcal{L}$, there is $w \in \mathcal{G}$ with $\hat{d}(v, w) < g(|v|)$.

Equivalently, $\mathcal{L} = \bigcup_{w \in \mathcal{G}} B_{\hat{d}}(w, g(|w|)).$

Example: For β -shifts, \mathcal{L} is edit approachable by \mathcal{G} .

Introduction	Uniqueness	Large deviations	Towers	Non-symbolic systems
000000	0000000	0000●0	00000	000

Theorem (C.–Thompson–Yamamoto, 2013)

X a shift space on a finite alphabet, \mathcal{L} its language. Suppose

- \mathcal{L} is edit approachable by \mathcal{G} ,
- *Q G* has specification (with good concatenations),
- $m \in \mathcal{M}(X)$ is Gibbs for φ on \mathcal{G} .

Then X satisfies a LDP with reference measure m and rate f'n

$$q(\mu) = egin{cases} h(\mu) + \int arphi \, d\mu - P(arphi) & \mu \in \mathcal{M}_\sigma(X) \ -\infty & \mu \notin \mathcal{M}_\sigma(X) \end{cases}$$

In particular, every Hölder continuous φ on a β -shift.

Introduction	Uniqueness	Large deviations	Towers	Non-symbolic systems
000000	0000000	00000●	00000	000
Key tool	in proof			

The bulk of the proof is in the following "horseshoe" proposition.

X a shift space, $\mathcal L$ edit approachable by $\mathcal G$ with specification

Then \exists an increasing sequence $X_n \subset X$ of subshifts s.t.

- **1** Each X_n has specification
- 2 If *m* is Gibbs on \mathcal{G} , then it is Gibbs on every $\mathcal{L}(X_n)$
- For every $\mu \in \mathcal{M}_{\sigma}(X)$ there are subshifts $Y_n \subset X_n$ s.t. $\mathcal{M}_{\sigma}(Y_n) \to \{\mu\}$ and $\underline{\lim} h(Y_n) \ge h(\mu)$

In particular, ergodic measures are entropy-dense in $\mathcal{M}_{\sigma}(X)$

Introduction 000000	Uniqueness 0000000	Large deviations	Towers ●0000	Non-symbolic systems
Таниана				
Towers				

Tower: enough of system coded by full shift on **countable** alphabet

For our purposes, (X, σ, μ) has tower if $\exists G \subset \mathcal{L}$ such that

• $\mu(G^{\mathbb{N}}) = 1$ (or $\mu(G^{\mathbb{Z}}) = 1$ for two-sided shifts)

•
$$v, w \in G \Rightarrow w \neq v \square$$

Tower is $\Omega = \{(\underline{w}, n) \in G^{\mathbb{N}} \times \mathbb{N} \mid n \leq |w_0|\}$

$$F \colon \Omega \to \Omega$$
 given by $F(\underline{w}, n) = egin{cases} (\underline{w}, n+1) & n < |w_0| \\ (\sigma(\underline{w}), 0) & n = |w_0| \end{cases}$

Return time: $R(w_0w_1w_2\cdots) = |w_0|$

• Exponential tails: $\mu \{R \ge n\} \le C \gamma^n$ $\gamma < 1$

Guarantees exponential decay of correlations, CLT

Introduction 000000	Uniqueness 0000000	Large deviations	Towers 0●000	Non-symbolic systems

Synchronised and coded shifts

Well-known: specification \Rightarrow synchronised \Rightarrow coded

Synchronised: $\exists v \in \mathcal{L}$ such that $uv \in \mathcal{L}, vw \in \mathcal{L} \Rightarrow uvw \in \mathcal{L}$

Coded: there exists $G \subset \mathcal{L}$ such that $\mathcal{L} = (G^*)^{\leq}$

• Equivalent: strongly connected countable graph presentation

Proof that synchronised \Rightarrow coded: $G = \{vu \mid vuv \in \mathcal{L}\}$

• Next slides: spec \Rightarrow sync (\Rightarrow coded) \Rightarrow tower

Dynamical interpretation: $x.v \square \leftrightarrow W^u$, $\square.vy \leftrightarrow W^s$

- Synchronised: local product structure on [v] for some v
- Markov: local product structure on [v] for all (suff. long) v

Introduction 000000	Uniqueness 0000000	Large deviations	Towers 00●00	Non-symbolic systems
A synchro	nising word			

Specification \Rightarrow synchronised (Bertrand 1988). Given $u, w \in \mathcal{L}$, let

 $C(u,w) = \{y \in \mathcal{L} \mid uyw \in \mathcal{L}, |y| \leq \tau\}.$

Specification implies non-empty.

- Start with any u, w. Note that $C(\Box u, w\Box) \subset C(u, w)$.
- Extend to $\Box u$ and $w \Box$ such that $C(\Box u, w \Box) \neq C(u, w)$.
- Iterate. C(u, w) finite \Rightarrow process terminates.
- Let v = uyw for some $y \in C(u, w) = C(\Box u, w\Box)$

Claim: v is a synchronising word

• $av \in \mathcal{L}$, $vb \in \mathcal{L} \Rightarrow auyw \in \mathcal{L}$, $uywb \in \mathcal{L}$

• By choice of u, w, get $y \in C(au, wb)$, so $avb = auywb \in \mathcal{L}$

Introduction 000000	Uniqueness 0000000	Large deviations	Towers 000●0	Non-symbolic systems

Towers from specification

 ${\rm Specification} \Rightarrow {\rm unique \ equilibrium \ state} \ \mu_{\varphi} \ {\rm for \ H\"older} \ \varphi$

Also implies synchronised, hence coded with $G = \{vu \mid vuv \in \mathcal{L}\}$

- μ -a.e. x has v occur infinitely often, hence in Z
- $\{R \geq n\} \subset \{x \mid x_k \cdots x_{k+n} \not\supseteq v\}$
- Partition sum over this set grows like $e^{nP'}$ for $P' < P(\varphi)$
- Gibbs property for μ_{φ} gives exponential tail

Theorem (C. 2013)

If X is a shift with specification on a finite alphabet and μ is the unique equilibrium state for a Hölder potential, then μ has EDC and CLT.

Introduction 000000	Uniqueness 0000000	Large deviations	Towers 00000	Non-symbolic systems

Non-uniform specification

Theorem (C. 2013)

Let X be a shift with a decomposition $\mathcal{L} = \mathcal{C}^{p}\mathcal{G}\mathcal{C}^{s}$ s.t.

• every \mathcal{G}^M has specification;

 $2 v \in \mathcal{G} \Rightarrow vw \in \mathcal{GC}^{s},$

and let $\varphi \in C(X)$ be a potential such that

(a) φ has bounded distortions on \mathcal{G} ;

 $P(\mathcal{C}^p \cup \mathcal{C}^s, \varphi) < P(\varphi).$

Let μ be the unique equilibrium state for φ . Then (X, σ, μ) has a tower with exponential tails, so that μ has EDC and CLT.

Proof follows similar idea, but X need not be synchronised.

 Get a word y that synchronises G, not L, then build tower around 'good' returns to [y], instead of all returns.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへで

Introduction	Uniqueness	Large deviations	Towers	Non-symbolic systems
000000	0000000		00000	●00

Weakened expansivity condition

(X, f) expansive $\Leftrightarrow \Gamma_{\epsilon}(x) := \bigcap_{n} B_{n}(x, \epsilon) = \{x\}$ for all $x \in X$. • Let $N_{\epsilon}^{\epsilon} = \{x \mid \Gamma_{\epsilon}(x) \neq \{x\}\}$ be the non-expansive set.

Pressure of obstructions to expansivity is

$$\mathcal{P}_{\mathrm{exp}}^{\perp}(arphi) = \lim_{\epsilon o 0} \sup\left\{ h(\mu) + \int arphi \, d\mu \mid \mu(\mathcal{N}_f^\epsilon) > 0, \mu \in \mathcal{M}_f
ight\}.$$

Replace language \mathcal{L} with space of orbit segments $X \times \mathbb{N}$, consider pressure of obstructions to φ -specification

$$P_{\mathrm{spec},\varphi}^{\perp}(\varphi) = \lim_{\epsilon \to 0} \inf\{P(\mathcal{C}^{p} \cup \mathcal{C}^{s}, \varphi, \epsilon) \mid X \times \mathbb{N} = \mathcal{C}^{p}\mathcal{G}\mathcal{C}^{s},$$

every \mathcal{G}^{M} has ϵ -specification with bounded φ -distortion}

Introduction	Uniqueness	Large deviations	Towers	Non-symbolic systems
000000	0000000		00000	○●○
A uniquer	ness result			

Theorem (C.–Thompson, 2013)

Let X be a compact metric space, $f: X \to X$ a continuous map, and $\varphi \in C(X)$. Suppose that $P_{\exp}^{\perp}(\varphi) < P(\varphi)$ and $P_{\operatorname{spec},\varphi}^{\perp}(\varphi) < P(\varphi)$. Then φ has a unique equilibrium state μ .

Question: Does μ have EDC and CLT? That is, can the tower construction from the symbolic setting be abstracted to this setting?

(日) (同) (三) (三) (三) (○) (○)

Introduction	Uniqueness	Large deviations	Towers	Non-symbolic systems
000000	0000000		00000	00●
Towers fr	rom specifica	ation		

Axiom A systems have towers (Young 1998): key ingredients are

- bounded distortion;
- local product structure;
- uniform transitivity.

Axiom A \Rightarrow local product structure everywhere

Expansive + specification \Rightarrow local product structure somewhere

- Expected theorem: Young's construction goes through ok
- Question: What about non-uniform spec / expansivity?