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The talk in one slide

Goal: Hyperbolicity  equilibrium states / SRB measures

Existence, uniqueness

Statistical properties

{
decay of correlations, CLT

large deviations, multifractal

Known:

Markov partition ⇒ all of these

Non-uniform version of Markov partition  towers

Specification ⇒ some of these

Questions:

Specification ⇒ EDC, CLT? Non-uniform specification?

Answers:

Non-uniform specification ⇒ uniqueness, large deviations

(NU) specification ⇒ tower
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General setting

X a compact metric space, f : X → X continuous

M = {Borel probability measures on X}
Mf = {f -invariant}, Me

f = {ergodic}

ϕ ∈ C (X )  P(ϕ) = sup{h(µ) +
∫
ϕ dµ | µ ∈Mf }

Topological pressure, also admits definition as dimension

Supremum achieved by equilibrium state

SRB (physical) measures are equilibrium states for − log Ju

Expansive ⇒ equilibrium states exist

For now, assume expansive (weaken this assumption later)
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Shift spaces

Shift space: closed, shift-invariant set X ⊂ AN

A = {1, . . . , p} a finite alphabet

Every finite word w ∈ A∗ =
⋃

n≥0 A
n determines a cylinder

[w ] = {x ∈ X | x1 · · · xn = w} (n = |w |)

The language of X is L = {w ∈ A∗ | [w ] 6= ∅}.

Transitive ⇔ for all u, v ∈ L there exists w ∈ L s.t. uwv ∈ L
X has specification if there exists τ ∈ N such that w can be
chosen with |w | ≤ τ , independently of the length of u, v
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Pressure as growth rate

Given D ⊂ L and ϕ ∈ C (X ), partition sums for D, ϕ are

Λn(D, ϕ) =
∑
w∈Dn

eϕn(w),

where Dn = {w ∈ D | |w | = n} and ϕn(w) = supx∈[w ] Snϕ(x).

Snϕ(x) = ϕ(x) + ϕ(σx) + · · ·+ ϕ(σn−1x)

Variational principle: P(ϕ) = limn→∞
1
n log Λn(L, ϕ)

For D ⊂ L, also consider P(D, ϕ) = limn→∞
1
n log Λn(D, ϕ).
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Unique equilibrium states

ϕ has bounded distortions if there exists V ∈ R such that

|Snϕ(x)− Snϕ(y)| ≤ V for all w ∈ L, x , y ∈ [w ] (n = |w |)

µ ∈Mσ(X ) is Gibbs if there are K ,K ′ > 0 such that

K ≤ µ[w ]

e−nP(ϕ)+Snϕ(x)
≤ K ′

for all w ∈ L, n = |w |, x ∈ [w ].

Theorem (Bowen, 1974)

If X has specification and ϕ has bounded distortions, then ϕ has a
unique equilibrium state µ, and µ has the Gibbs property.



Introduction Uniqueness Large deviations Towers Non-symbolic systems

Large deviations

(x , n) ∈ X × N empirical measure En(x) = 1
n

∑n−1
k=0 δσkx

m ∈M has large deviations principle with rate q : M→ [−∞, 0] if

U ⊂M open ⇒ lim inf
n→∞

1

n
logm{x | En(x) ∈ U} ≥ sup

µ∈U
q(µ)

and similar upper bound on lim sup when U closed.

Theorem (Young, 1990)

If X has specification and m is Gibbs for ϕ, then X satisfies a large
deviations principle with reference measure m and rate function

q(µ) =

{
h(µ) +

∫
ϕ dµ− P(ϕ) µ ∈Mσ(X )

−∞ µ /∈Mσ(X )
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Other statistical properties

(X , σ, µ) has exponential decay of correlations on a class of
functions F if there is γ < 1 s.t. ∀ϕ,ψ ∈ F ∃C = C (ϕ,ψ) s.t.∣∣∣∣∫ (ϕ ◦ σn)ψ dµ−

∫
ϕ dµ

∫
ψ dµ

∣∣∣∣ ≤ Cγn

Question: Specification ⇒ µϕ has EDC? What about CLT?

Known: Both follow if (X , σ, µ) has a tower with exponential tails

Revised question: Specification ⇒ a tower with exponential tails?

Return to this after discussing non-uniform specification
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β-shifts

For β > 1, Σβ is the coding space for the map

fβ : [0, 1]→ [0, 1], x 7→ βx (mod 1)

1β = a1a2 · · · , where 1 =
∑∞

n=1 anβ
−n

fβ(x)

x0 1 2

Fact: x ∈ Σβ ⇔ σnx � 1β for all n

⇔ x labels a walk starting at B on this graph:

(Here 1β = 2100201 . . . )
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Properties of β-shifts

Σβ has specification iff 1β 6⊃ arbitrarily long sequences of 0s

Schmeling (1997): For Leb-a.e. β, Σβ does not have specification

Hofbauer (1979): Σβ has a unique measure of maximal entropy

Walters (1978): Every Lipschitz potential has a unique eq. state

Equilibrium state is not Gibbs – so what about large deviations?
And what about more general bounded distortion potentials?
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Collections of words

D ⊂ L has specification if there exists τ ∈ N such that for all
u, v ∈ D, there exists w ∈ L with |w | ≤ τ such that uwv ∈ L.

Σβ: G = {words starting and ending at B} has specification

ϕ has bounded distortion on D if there exists V ∈ R such that for
all w ∈ D, n = |w |, x , y ∈ [w ], we have |Snϕ(x)− Snϕ(y)| ≤ V .

µ has the Gibbs property on D if there are K ,K ′ > 0 such that for
all w ∈ D, n = |w |, x ∈ [w ], we have K ≤ µ[w ]

e−nP(ϕ)+Snϕ(x) ≤ K ′.
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Decompositions

Idea: Unique ES if spec and bdd dist on “large enough” G ⊂ L

What does “large enough” mean?

Decomposition of L: sets Cp,G, Cs ⊂ L such that L = CpGCs .

GM = {uvw ∈ L | u ∈ Cp, v ∈ G,w ∈ Cs , |u|, |w | ≤ M}

Theorem (C.–Thompson, 2012)

Suppose L has a decomposition such that

1 ϕ has bounded distortion on G
2 GM has specification for every M

3 P(Cp ∪ Cs , ϕ) < P(ϕ)

Then ϕ has a unique equilibrium state µ. It is Gibbs on each GM .
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Example: β-shift

Cp = ∅
G = {words (paths) starting and ending at B}
Cs = {words (paths) starting at B and never returning}

L = CpGCs

GM corresponds to paths ending in first M vertices, so GM
has specification for each M

h(C) = 0, where C = Cp ∪ Cs
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Hölder potentials

To get unique equilibrium state for ϕ, need P(C, ϕ) < P(ϕ).

Equivalent conditions: (hyperbolic potential)

supx lim 1
nSnϕ(x) < P(ϕ)

∃n such that supx
1
nSnϕ(x) < P(ϕ)

Every equilibrium state for ϕ has h(µ) > 0

Theorem (C.–Thompson, 2012)

When X is a β-shift, every Hölder continuous potential is
hyperbolic. In particular, it has a unique equilibrium state µ, and µ
is Gibbs on each GM .
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Interval maps

Let f be a piecewise expanding interval map, X the coding space

Graph presentation gives decomposition: F a finite subset
Cp = paths entering F only on last step, or never

G = paths starting and ending in F

Cs = paths starting in F and never returning

h(C) > 0, but can be made arbitrarily small by taking F large

Unique equilibrium state for ϕ, Gibbs on each GM , if

supx lim 1
nSnϕ(x) < P(ϕ) (or other equiv. condition)

Question: Hölder ⇒ unique ES for all such interval maps?

∃ shift space with h(C) = 0 but above properties fail (Conrad)
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Statistical specification properties

Large deviations results have been obtained for β-shift and other
systems by using statistical specification properties.

Pfister, Sullivan (2005)

Yamamoto (2009)

Varandas (2012)

All reflect idea that the gluing procedure can be weakened in a way
that does not interfere too much with Birkhoff averages.
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β-shifts

Given any v ∈ L, can transform v into a word u ∈ G by making a
single change. (Change last non-zero symbol to 0).

Thus given any v ,w ∈ L, the word vw may not be in L, but can
be transformed into a word in L by making a single change.

General method for getting a word that concatenates statistical
properties of v and w , as long as number of changes

length of word → 0.
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Edit metric

Goal: Define a metric on A∗ (set of all finite words) that controls
how much Birkhoff sums can vary.

An edit of a word w is any of the following:

Substition: w = uav 7→ w ′ = ubv u, v ∈ A∗, a, b ∈ A

Insertion: w = uv 7→ w ′ = ubv u, v ∈ A∗, b ∈ A

Deletion: w = uav 7→ w ′ = uv u, v ∈ A∗, a ∈ A

d̂(v ,w) = minimum number of edits required to go from v to w .

Key property: Let D be a metric inducing the weak* topology on

M(X ). Then for every η > 0 there is δ > 0 such that if d̂(v ,w)
|v | < δ,

then D(E|v |(x), E|w |(y)) < η for all x ∈ [v ] and y ∈ [w ].
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Edit approachability

mistake function: a non-increasing sub-linear function g : N→ N.
(g(n)n → 0)

L is edit approachable by G ⊂ L if there exists a mistake function
g such that for every v ∈ L, there is w ∈ G with d̂(v ,w) < g(|v |).

Equivalently, L =
⋃

w∈G Bd̂(w , g(|w |)).

Example: For β-shifts, L is edit approachable by G.
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Theorem (C.–Thompson–Yamamoto, 2013)

X a shift space on a finite alphabet, L its language. Suppose

1 L is edit approachable by G,

2 G has specification (with good concatenations),

3 m ∈M(X ) is Gibbs for ϕ on G.

Then X satisfies a LDP with reference measure m and rate f’n

q(µ) =

{
h(µ) +

∫
ϕ dµ− P(ϕ) µ ∈Mσ(X )

−∞ µ /∈Mσ(X )

In particular, every Hölder continuous ϕ on a β-shift.
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Key tool in proof

The bulk of the proof is in the following “horseshoe” proposition.

X a shift space, L edit approachable by G with specification

Then ∃ an increasing sequence Xn ⊂ X of subshifts s.t.

1 Each Xn has specification

2 If m is Gibbs on G, then it is Gibbs on every L(Xn)

3 For every µ ∈Mσ(X ) there are subshifts Yn ⊂ Xn s.t.
Mσ(Yn)→ {µ} and lim h(Yn) ≥ h(µ)

In particular, ergodic measures are entropy-dense in Mσ(X )
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Towers

Tower: enough of system coded by full shift on countable alphabet

For our purposes, (X , σ, µ) has tower if ∃G ⊂ L such that

µ(GN) = 1 (or µ(GZ) = 1 for two-sided shifts)

v ,w ∈ G ⇒ w 6= v�

Tower is Ω = {(w , n) ∈ GN × N | n ≤ |w0|}

F : Ω→ Ω given by F (w , n) =

{
(w , n + 1) n < |w0|
(σ(w), 0) n = |w0|

Return time: R(w0w1w2 · · · ) = |w0|
Exponential tails: µ{R ≥ n} ≤ Cγn γ < 1

Guarantees exponential decay of correlations, CLT



Introduction Uniqueness Large deviations Towers Non-symbolic systems

Synchronised and coded shifts

Well-known: specification ⇒ synchronised ⇒ coded

Synchronised: ∃ v ∈ L such that uv ∈ L, vw ∈ L ⇒ uvw ∈ L

Coded: there exists G ⊂ L such that L = (G ∗)≤

Equivalent: strongly connected countable graph presentation

Proof that synchronised ⇒ coded: G = {vu | vuv ∈ L}
Next slides: spec ⇒ sync (⇒ coded) ⇒ tower

Dynamical interpretation: x .v�↔W u, �.vy ↔W s

Synchronised: local product structure on [v ] for some v

Markov: local product structure on [v ] for all (suff. long) v
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A synchronising word

Specification ⇒ synchronised (Bertrand 1988). Given u,w ∈ L, let

C (u,w) = {y ∈ L | uyw ∈ L, |y | ≤ τ}.

Specification implies non-empty.

Start with any u,w . Note that C (�u,w�) ⊂ C (u,w).

Extend to �u and w� such that C (�u,w�) 6= C (u,w).

Iterate. C (u,w) finite ⇒ process terminates.

Let v = uyw for some y ∈ C (u,w) = C (�u,w�)

Claim: v is a synchronising word

av ∈ L, vb ∈ L ⇒ auyw ∈ L, uywb ∈ L
By choice of u,w , get y ∈ C (au,wb), so avb = auywb ∈ L
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Towers from specification

Specification ⇒ unique equilibrium state µϕ for Hölder ϕ

Also implies synchronised, hence coded with G = {vu | vuv ∈ L}
µ-a.e. x has v occur infinitely often, hence in Z

{R ≥ n} ⊂ {x | xk · · · xk+n 6⊃ v}
Partition sum over this set grows like enP

′
for P ′ < P(ϕ)

Gibbs property for µϕ gives exponential tail

Theorem (C. 2013)

If X is a shift with specification on a finite alphabet and µ is the
unique equilibrium state for a Hölder potential, then µ has EDC
and CLT.
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Non-uniform specification

Theorem (C. 2013)

Let X be a shift with a decomposition L = CpGCs s.t.

1 every GM has specification;

2 v ∈ G ⇒ vw ∈ GCs ,

and let ϕ ∈ C (X ) be a potential such that

3 ϕ has bounded distortions on G;

4 P(Cp ∪ Cs , ϕ) < P(ϕ).

Let µ be the unique equilibrium state for ϕ. Then (X , σ, µ) has a
tower with exponential tails, so that µ has EDC and CLT.

Proof follows similar idea, but X need not be synchronised.

Get a word y that synchronises G, not L, then build tower
around ’good’ returns to [y ], instead of all returns.
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Weakened expansivity condition

(X , f ) expansive ⇔ Γε(x) :=
⋂

n Bn(x , ε) = {x} for all x ∈ X .

Let Nε
f = {x | Γε(x) 6= {x}} be the non-expansive set.

Pressure of obstructions to expansivity is

P⊥exp(ϕ) = lim
ε→0

sup

{
h(µ) +

∫
ϕ dµ | µ(Nε

f ) > 0, µ ∈Mf

}
.

Replace language L with space of orbit segments X × N, consider
pressure of obstructions to ϕ-specification

P⊥spec,ϕ(ϕ) = lim
ε→0

inf{P(Cp ∪ Cs , ϕ, ε) | X × N = CpGCs ,

every GM has ε-specification with bounded ϕ-distortion}
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A uniqueness result

Theorem (C.–Thompson, 2013)

Let X be a compact metric space, f : X → X a continuous map,
and ϕ ∈ C (X ). Suppose that P⊥exp(ϕ) < P(ϕ) and

P⊥spec,ϕ(ϕ) < P(ϕ). Then ϕ has a unique equilibrium state µ.

Question: Does µ have EDC and CLT? That is, can the tower
construction from the symbolic setting be abstracted to this
setting?
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Towers from specification

Axiom A systems have towers (Young 1998): key ingredients are

1 bounded distortion;

2 local product structure;

3 uniform transitivity.

Axiom A ⇒ local product structure everywhere

Expansive + specification ⇒ local product structure somewhere

1 Expected theorem: Young’s construction goes through ok

2 Question: What about non-uniform spec / expansivity?
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