Introduction	Uniqueness	Large deviations	Coded systems

Large deviations using non-uniform specification properties

Vaughn Climenhaga University of Houston

August 8, 2013

Joint work with Daniel J. Thompson (Ohio State) and Kenichiro Yamamoto (Tokyo Denki University)

Introduction •00000	Uniqueness 000	Large deviations	Coded systems
The talk in on	e slide		
	c shac		

Setting: $X \subset \mathcal{A}^{\mathbb{N}}$ a shift space on a finite alphabet

Theorem (Known results)

Suppose X has specification. Then

- **1** bounded distortion \Rightarrow unique equilibrium state + Gibbs
- **2** Gibbs \Rightarrow large deviations principle

Goal: Same results with non-uniform versions of above properties

Key idea:

- \mathcal{L} the language of X (space of finite orbit segments)
- \bullet Only require properties for $\mathcal{G}\subset\mathcal{L}$
- Get results if $\mathcal G$ is "big enough"

Introduction	Uniqueness	Large deviations	Coded systems
00000			

Shift spaces, languages, and sets of words

Shift space: closed, shift-invariant set $X \subset \mathcal{A}^{\mathbb{N}}$ (\mathcal{A} finite: alphabet)

- Finite word $w \in \mathcal{A}^* = \bigcup_{n \ge 0} \mathcal{A}^n \rightsquigarrow \text{cylinder}[w]$
- Language of X is $\mathcal{L} = \{ w \in \mathcal{A}^* \mid [w] \neq \emptyset \}.$

Example: $\beta > 1 \rightsquigarrow X = \Sigma_{\beta}$ is coding space for $x \mapsto \beta x \pmod{1}$

Sequence determined by $1 = \sum_{n=1}^{\infty} a_n \beta^{-n}$

$$\label{eq:labels} \begin{split} \mathcal{L} = \{ \text{labels of paths} \\ \text{starting at } \boldsymbol{B} \} \end{split}$$

Consider subsets $\mathcal{D} \subset \mathcal{L}$ (points + times) / (orbit segments)

- $\mathcal{G} = \{ \text{labels for paths starting and ending at } \mathbf{B} \}$
- $C^s = \{ \text{labels for paths that never return to } \mathbf{B} \}$

Introduction 000000	Uniqueness 000	Large deviations	Coded systems
A 100	-		

Specification

Various transitivity/mixing properties for (X, σ) :

(irreducible) Markov/sofic \Rightarrow (weak) specification \Rightarrow transitive

Definition: $\mathcal{D} \subset \mathcal{L}$ has specification if $\exists \tau$ (gluing time) s.t. words from \mathcal{D} can be glued together with connecting words of length $\leq \tau$ • $\forall w^1, \ldots, w^k \in \mathcal{D}$ there exist $v^1, \ldots, v^k \in \mathcal{L}$ such that $w^i v^i w^{i+1} v^{i+1} \cdots w^{j-1} v^{j-1} w^j \in \mathcal{D}$ for all $1 \leq i < j \leq k$

Example: For the β -shifts, \mathcal{G} has specification, but \mathcal{L} does not

Introduction	Uniqueness	Large deviations	Coded systems
000000	000	00000	
Large deviations			

 $\mathcal{M}(X) = \{ \text{Borel prob. measures on } X \} \qquad \mathcal{E}_n(x)(\varphi) = \frac{1}{n} S_n \varphi(x)$ • Empirical measures: $\mathcal{E}_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} \delta_{\sigma^k x}$

Fix a reference measure $m \in \mathcal{M}(X)$

- Assume m is σ -invariant and ergodic
- Birkhoff ergodic theorem: $\mathcal{E}_n(x) \to m$ for *m*-a.e. *x*

Large deviations: Given $U \subset \mathcal{M}(X)$, study $m\{x \mid \mathcal{E}_n(x) \in U\}$

• Goes to 0 if $m \notin U$. Exponentially? Polynomially?

Example: $m\{x \mid |\frac{1}{n}S_n\varphi(x) - \int \varphi \, dm| > \epsilon\}$

Introduction 000000	Uniqueness 000	Large deviations 00000	Coded systems

Thermodynamics

Pressure of φ on $\mathcal{D} \subset \mathcal{L}$ is $P(\mathcal{D}, \varphi) = \lim \frac{1}{n} \log \left(\sum_{\mathcal{D}_n} e^{\varphi_n(w)} \right)$ • $\mathcal{D}_n = \{ w \in \mathcal{D} \mid |w| = n \}$ $\varphi_n(w) = \sup_{x \in [w]} S_n \varphi(x)$

Variational principle: $P(\varphi) = \sup\{h(\mu) + \int \varphi \, d\mu \mid \mu \in \mathcal{M}_{\sigma}(X)\}$

- $\mathcal{M}_{\sigma}(X) = \{\mu \in \mathcal{M}(X) \mid \mu \text{ is } \sigma \text{-invariant}\}$
- Supremum achieved by equilibrium states

Uniqueness of equilibrium state related to statistical properties

Introduction	Uniqueness	Large deviations	Coded systems
000000			

Classical (uniform) results

Bowen (1974): If (X, σ) has specification and φ is Hölder, then:

• φ has a unique equilibrium state $\mu \in \mathcal{M}_{\sigma}(X)$

•
$$\mu$$
 is Gibbs: $K \leq \frac{\mu[w]}{e^{-nP(\varphi)+S_n\varphi(x)}} \leq K'$ for all $x \in [w]$, $w \in \mathcal{L}_n$

Young (1990): If (X, σ) has specification and *m* is Gibbs for φ , then we have a large deviations principle with reference measure m:

$$U \subset \mathcal{M}(X) \text{ open } \Rightarrow \lim_{n \to \infty} \frac{1}{n} \log m\{x \mid \mathcal{E}_n(x) \in U\} \ge \sup_{\mu \in U} q(\mu)$$
$$F \subset \mathcal{M}(X) \text{ closed } \Rightarrow \overline{\lim_{n \to \infty} \frac{1}{n}} \log m\{x \mid \mathcal{E}_n(x) \in F\} \le \sup_{\mu \in F} q(\mu)$$

Rate function $q(\mu) = \begin{cases} h(\mu) + \int \varphi \, d\mu - P(\varphi) & \mu \in \mathcal{M}_{\sigma}(X) \\ -\infty & \mu \notin \mathcal{M}_{\sigma}(X) \end{cases}$ - ロ ト - 4 回 ト - 4 □ - 4

Introduction 000000	Uniqueness ●oo	Large deviations	Coded systems
Mativating	daa		

Similar theorems in non-uniform setting given following condition:

• " $\mathcal{G} \subset \mathcal{L}$ has good properties, and every word in \mathcal{L} can be transformed into a word in \mathcal{G} without too much fuss"

For **uniqueness**, this means every \mathcal{G}^M has specification, and

- Transform $w \in \mathcal{L}$ to $v \in \mathcal{G}$ by removing "bad bits" from ends (Decompose as $w = u^p v u^s$)
- u^p, u^s come from a list $C \subset \mathcal{L}$ of "obstructions", and list is "thermodynamically small" $(P(C, \varphi) < P(\varphi))$

For large deviations, this means $\mathcal G$ has spec, m Gibbs on φ , and

• $\mathcal{L} \rightsquigarrow \mathcal{G}$ by making edits (insertions, deletions, changes)

• Number of edits $\leq g(|w|)$, where $\frac{g(n)}{n} \rightarrow 0$

Introduction	Uniqueness	Large deviations	Coded systems
000000	o●o	00000	

Decompositions and uniqueness

Decomposition of \mathcal{L} : sets $\mathcal{C}^{p}, \mathcal{G}, \mathcal{C}^{s} \subset \mathcal{L}$ such that $\mathcal{L} = \mathcal{C}^{p}\mathcal{G}\mathcal{C}^{s}$.

$$\mathcal{G}^{M} = \{ uvw \in \mathcal{L} \mid u \in \mathcal{C}^{p}, v \in \mathcal{G}, w \in \mathcal{C}^{s}, |u|, |w| \leq M \}$$

Theorem (C.–Thompson, 2012)

Suppose \mathcal{L} has a decomposition such that

- **(**) φ has bounded distortion on $\mathcal G$
- **2** \mathcal{G}^M has specification for every M

$$P(\mathcal{C}^p \cup \mathcal{C}^s, \varphi) < P(\varphi)$$

Then φ has a unique equilibrium state μ . It is Gibbs on each \mathcal{G}^{M} .

Strong spec. for $\mathcal{G}^M \Rightarrow (X, \sigma, \mu)$ is Kolmogorov (Ledrappier)

Introduction 000000	Uniqueness 00●	Large deviations	Coded systems
- I	0 1.0		

Example: β -shift

$$\mathcal{C}^{p} = \emptyset$$

 $\mathcal{G} = \{ \text{words (paths) starting and ending at } B \}$

 $C^{s} = \{ words (paths) starting at B and never returning \}$

• $\mathcal{L} = \mathcal{C}^{p}\mathcal{G}\mathcal{C}^{s}$

• $\mathcal{G}^M = \{ \text{paths ending in first } M \text{ vertices} \}$ has spec. for each M

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

- $h(\mathcal{C}) = 0$, where $\mathcal{C} = \mathcal{C}^p \cup \mathcal{C}^s$
- In fact, $P(\mathcal{C}, \varphi) < P(\varphi)$ for every Hölder φ

Introduction	Uniqueness	Large deviations	Coded systems
000000	000	●0000	

Statistical specification properties

Large deviations results have been obtained for β -shift and other systems by using statistical specification properties.

- Pfister, Sullivan (2005)
- Yamamoto (2009)
- Varandas (2012)

All reflect idea that the gluing procedure can be weakened in a way that does not interfere too much with Birkhoff averages.

Introduction 000000	Uniqueness 000	Large deviations 0000	Coded systems

Given any $v \in \mathcal{L}$, can transform v into a word $u \in \mathcal{G}$ by making a single change. (Change last non-zero symbol to 0).

Thus given any $v, w \in \mathcal{L}$, the word vw may not be in \mathcal{L} , but can be transformed into a word in \mathcal{L} by making a single change.

General method for getting a word that concatenates statistical properties of v and w, as long as $\frac{\text{number of changes}}{\text{length of word}} \rightarrow 0.$

Introduction 000000	Uniqueness 000	Large deviations 00●00	Coded systems
Edit motric			

Goal: Define a metric on \mathcal{A}^* (set of all finite words) that controls how much Birkhoff sums can vary.

An edit of a word w is any of the following:

- Substition: $w = uav \mapsto w' = ubv$ $u, v \in \mathcal{A}^*, a, b \in \mathcal{A}$
- Insertion: $w = uv \mapsto w' = ubv$ $u, v \in \mathcal{A}^*, b \in \mathcal{A}$
- Deletion: $w = uav \mapsto w' = uv$ $u, v \in \mathcal{A}^*, a \in \mathcal{A}$

 $\hat{d}(v, w) =$ minimum number of edits required to go from v to w.

• Induces a metric on $X \times \mathbb{N}$ via $(x, n) \mapsto x_1 \cdots x_n$

Key property: $\mathcal{E}: (X \times \mathbb{N}, \hat{d}) \to (\mathcal{M}(X), \text{weak}^*)$ is continuous

• \mathcal{E} assigns to each (x, n) the empirical measure $\mathcal{E}_n(x)$

Introduction 000000	Uniqueness 000	Large deviations 000€0	Coded systems
- D.	1.1.1.1.1.		

Edit approachability

mistake function: a non-decreasing sub-linear function $g: \mathbb{N} \to \mathbb{N}$. $(\frac{g(n)}{n} \to 0)$

 \mathcal{L} is edit approachable by $\mathcal{G} \subset \mathcal{L}$ if there exists a mistake function g such that for every $v \in \mathcal{L}$, there is $w \in \mathcal{G}$ with $\hat{d}(v, w) < g(|v|)$.

Theorem (C.–Thompson–Yamamoto, 2013)

X a shift space on a finite alphabet, \mathcal{L} its language. Suppose

- **1** \mathcal{L} is edit approachable by \mathcal{G} ,
- *Q G* has specification (with good concatenations),

③
$$m \in \mathcal{M}(X)$$
 is Gibbs for φ on \mathcal{G} .

Then X satisfies a LDP with reference measure m and rate q^{φ}

In particular, every Hölder continuous φ on a β -shift

Introduction 000000	Uniqueness 000	Large deviations 0000●	Coded systems
Recap			

Moral of the story:

Many good consequences of specification (and other properties) can still be obtained as long as properties hold on a "large enough" set of words (orbit segments)

"Large enough" means the ability to get from ${\cal L}$ to ${\cal G}$ with some "small" tinkering, where meaning of "small" depends on context

- Unique equilibrium state: only need to remove a prefix and a suffix from the word in \mathcal{L} , and these come from "small" lists
- Large deviations: only need to make a small number of edits

Introduction 000000	Uniqueness 000	Large deviations	Coded systems
Coded system			

Present shift as paths on graph with edge labels from $\ensuremath{\mathcal{A}}$

- Finite graph ~> sofic shift
- Countable graph ~> coded shift

Decomposition in terms of graph presentation

- F a finite set of vertices, G = paths starting and ending in F
- C^{p} = paths only entering F on last step, or never
- C^s = paths starting in F and never returning

Presentation and decomposition in terms of generators

- $\mathcal{G} \subset \mathcal{A}^*$ a set of generators, $\mathcal{G} = \mathcal{G}^* = \{w^1 \cdots w^n \mid w^j \in \mathcal{G}\}$
- $\mathcal{C}^{p} =$ suffixes of generators, $\mathcal{C}^{s} =$ prefixes of generators

Introduction 000000	Uniqueness 000	Large deviations	Coded systems ○●○
S-gan shitte			

Fix $S \subset \mathbb{N}$, take generators $G = \{0^n 1 \mid n \in S\}$

• $\mathcal{L} = \{0^k 10^{n_1} 10^{n_2} 1 \cdots 0^{n_j} 10^\ell \mid n_i \in S\}$

Natural decomposition with h(C) = 0 and edit approachability:

•
$$\mathcal{G} = \{0^{n_1} 1 \cdots 0^{n_j} 1 \mid n_i \in S\}$$

• $\mathcal{C}^p = \{0^k 1 \mid k \in \mathbb{N}\}, \quad \mathcal{C}^s = \{0^\ell \mid \ell \in \mathbb{N}\}$

Def'n: (X, φ) is hyperbolic if $P(\varphi) > \sup_{\mu} \int \varphi \, d\mu$ (h(ES) > 0)

Theorem

$$(h(\mathcal{C}) = 0) + (hyperbolic) \Rightarrow P(\varphi) > P(\mathcal{C}, \varphi)$$

(S-gap, Hölder) \Rightarrow hyperbolic \Rightarrow unique ES, Gibbs on \mathcal{G}^M , LDP

Introduction	Uniqueness	Large deviations	Coded systems
000000	000		00●
Open questio	ons		

Transitive piecewise monotonic interval maps have coded codings

- h(C) can be made arbitrarily small \Rightarrow unique MME
- Edit approachable by specification? Hölder \Rightarrow hyperbolic?

General conditions for Hölder to imply hyperbolic

- True for β -shift, S-gap shift
- Is it true whenever \mathcal{L} edit approachable by specification?

Examples where Hölder does not imply hyperbolic

• Candidate: context-free shift $G = \{01^n 2^n \mid n \in \mathbb{N}\}$

- Not edit approachable by specification (Scott Conrad)
- Non-hyperbolic Hölder potential?