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The talk in one slide

Setting: X ⊂ AN a shift space on a finite alphabet

Theorem (Known results)

Suppose X has specification. Then

1 bounded distortion ⇒ unique equilibrium state + Gibbs

2 Gibbs ⇒ large deviations principle

Goal: Same results with non-uniform versions of above properties

Key idea:

L the language of X (space of finite orbit segments)

Only require properties for G ⊂ L
Get results if G is “big enough”
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Shift spaces, languages, and sets of words

Shift space: closed, shift-invariant set X ⊂ AN (A finite: alphabet)

Finite word w ∈ A∗ =
⋃

n≥0An  cylinder [w ]

Language of X is L = {w ∈ A∗ | [w ] 6= ∅}.

Example: β > 1 X = Σβ is coding space for x 7→ βx (mod 1)

Sequence determined
by 1 =

∑∞
n=1 anβ

−n

L = {labels of paths
starting at B}

Consider subsets D ⊂ L (points + times) / (orbit segments)

G = {labels for paths starting and ending at B}
Cs = {labels for paths that never return to B}
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Specification

Various transitivity/mixing properties for (X , σ):

(irreducible) Markov/sofic ⇒ (weak) specification ⇒ transitive

Definition: D ⊂ L has specification if ∃τ (gluing time) s.t. words
from D can be glued together with connecting words of length ≤ τ

∀w1, . . . ,wk ∈ D there exist v1, . . . , vk ∈ L such that
w iv iw i+1v i+1 · · ·w j−1v j−1w j ∈ D for all 1 ≤ i < j ≤ k

Example: For the β-shifts, G has specification, but L does not
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Large deviations

M(X ) = {Borel prob. measures on X} En(x)(ϕ) = 1
nSnϕ(x)

Empirical measures: En(x) = 1
n

∑n−1
k=0 δσkx

Fix a reference measure m ∈M(X )

Assume m is σ-invariant and ergodic

Birkhoff ergodic theorem: En(x)→ m for m-a.e. x

Large deviations: Given U ⊂M(X ), study m{x | En(x) ∈ U}
Goes to 0 if m /∈ U. Exponentially? Polynomially?

Example: m{x | | 1nSnϕ(x)−
∫
ϕ dm| > ε}
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Thermodynamics

Pressure of ϕ on D ⊂ L is P(D, ϕ) = lim 1
n log

(∑
Dn

eϕn(w)
)

Dn = {w ∈ D | |w | = n} ϕn(w) = supx∈[w ] Snϕ(x)

Variational principle: P(ϕ) = sup{h(µ) +
∫
ϕ dµ | µ ∈Mσ(X )}

Mσ(X ) = {µ ∈M(X ) | µ is σ-invariant}
Supremum achieved by equilibrium states

Uniqueness of equilibrium state related to statistical properties
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Classical (uniform) results

Bowen (1974): If (X , σ) has specification and ϕ is Hölder, then:

ϕ has a unique equilibrium state µ ∈Mσ(X )

µ is Gibbs: K ≤ µ[w ]

e−nP(ϕ)+Snϕ(x) ≤ K ′ for all x ∈ [w ], w ∈ Ln

Young (1990): If (X , σ) has specification and m is Gibbs for ϕ,
then we have a large deviations principle with reference measure m:

U ⊂M(X ) open ⇒ lim
n→∞

1

n
log m{x | En(x) ∈ U} ≥ sup

µ∈U
q(µ)

F ⊂M(X ) closed ⇒ lim
n→∞

1

n
log m{x | En(x) ∈ F} ≤ sup

µ∈F
q(µ)

Rate function q(µ) =

{
h(µ) +

∫
ϕ dµ− P(ϕ) µ ∈Mσ(X )

−∞ µ /∈Mσ(X )
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Motivating idea

Similar theorems in non-uniform setting given following condition:

“G ⊂ L has good properties, and every word in L can be
transformed into a word in G without too much fuss”

For uniqueness, this means every GM has specification, and

Transform w ∈ L to v ∈ G by removing “bad bits” from ends
(Decompose as w = upvus)

up, us come from a list C ⊂ L of “obstructions”, and list is
“thermodynamically small” (P(C, ϕ) < P(ϕ))

For large deviations, this means G has spec, m Gibbs on ϕ, and

L G by making edits (insertions, deletions, changes)

Number of edits ≤ g(|w |), where g(n)
n → 0
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Decompositions and uniqueness

Decomposition of L: sets Cp,G, Cs ⊂ L such that L = CpGCs .

GM = {uvw ∈ L | u ∈ Cp, v ∈ G,w ∈ Cs , |u|, |w | ≤ M}

Theorem (C.–Thompson, 2012)

Suppose L has a decomposition such that

1 ϕ has bounded distortion on G
2 GM has specification for every M

3 P(Cp ∪ Cs , ϕ) < P(ϕ)

Then ϕ has a unique equilibrium state µ. It is Gibbs on each GM .

Strong spec. for GM ⇒ (X , σ, µ) is Kolmogorov (Ledrappier)
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Example: β-shift

Cp = ∅
G= {words (paths) starting and ending at B}
Cs = {words (paths) starting at B and never returning}

L = CpGCs

GM = {paths ending in first M vertices} has spec. for each M

h(C) = 0, where C = Cp ∪ Cs

In fact, P(C, ϕ) < P(ϕ) for every Hölder ϕ
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Statistical specification properties

Large deviations results have been obtained for β-shift and other
systems by using statistical specification properties.

Pfister, Sullivan (2005)

Yamamoto (2009)

Varandas (2012)

All reflect idea that the gluing procedure can be weakened in a way
that does not interfere too much with Birkhoff averages.
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β-shifts

Given any v ∈ L, can transform v into a word u ∈ G by making a
single change. (Change last non-zero symbol to 0).

Thus given any v ,w ∈ L, the word vw may not be in L, but can
be transformed into a word in L by making a single change.

General method for getting a word that concatenates statistical
properties of v and w , as long as number of changes

length of word → 0.



Introduction Uniqueness Large deviations Coded systems

Edit metric

Goal: Define a metric on A∗ (set of all finite words) that controls
how much Birkhoff sums can vary.

An edit of a word w is any of the following:

Substition: w = uav 7→ w ′ = ubv u, v ∈ A∗, a, b ∈ A
Insertion: w = uv 7→ w ′ = ubv u, v ∈ A∗, b ∈ A
Deletion: w = uav 7→ w ′ = uv u, v ∈ A∗, a ∈ A

d̂(v ,w) = minimum number of edits required to go from v to w .

Induces a metric on X × N via (x , n) 7→ x1 · · · xn

Key property: E : (X × N, d̂)→ (M(X ),weak*) is continuous

E assigns to each (x , n) the empirical measure En(x)
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Edit approachability

mistake function: a non-decreasing sub-linear function g : N→ N.
(g(n)n → 0)

L is edit approachable by G ⊂ L if there exists a mistake function
g such that for every v ∈ L, there is w ∈ G with d̂(v ,w) < g(|v |).

Theorem (C.–Thompson–Yamamoto, 2013)

X a shift space on a finite alphabet, L its language. Suppose

1 L is edit approachable by G,

2 G has specification (with good concatenations),

3 m ∈M(X ) is Gibbs for ϕ on G.

Then X satisfies a LDP with reference measure m and rate qϕ

In particular, every Hölder continuous ϕ on a β-shift
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Recap

Moral of the story:

Many good consequences of specification (and other properties)
can still be obtained as long as properties hold on a “large enough”
set of words (orbit segments)

“Large enough” means the ability to get from L to G with some
“small” tinkering, where meaning of “small” depends on context

Unique equilibrium state: only need to remove a prefix and a
suffix from the word in L, and these come from “small” lists

Large deviations: only need to make a small number of edits
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Coded systems

Present shift as paths on graph with edge labels from A
Finite graph  sofic shift

Countable graph  coded shift

Decomposition in terms of graph presentation

F a finite set of vertices, G = paths starting and ending in F

Cp = paths only entering F on last step, or never

Cs = paths starting in F and never returning

Presentation and decomposition in terms of generators

G ⊂ A∗ a set of generators, G = G ∗ = {w1 · · ·wn | w j ∈ G}
Cp = suffixes of generators, Cs = prefixes of generators
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S-gap shifts

Fix S ⊂ N, take generators G = {0n1 | n ∈ S}
L = {0k10n110n21 · · · 0nj 10` | ni ∈ S}

Natural decomposition with h(C) = 0 and edit approachability:

G = {0n11 · · · 0nj 1 | ni ∈ S}
Cp = {0k1 | k ∈ N}, Cs = {0` | ` ∈ N}

Def’n: (X , ϕ) is hyperbolic if P(ϕ) > supµ
∫
ϕ dµ (h(ES) > 0)

Theorem

(h(C) = 0) + (hyperbolic) ⇒ P(ϕ) > P(C, ϕ)

(S-gap, Hölder) ⇒ hyperbolic ⇒ unique ES, Gibbs on GM , LDP
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Open questions

Transitive piecewise monotonic interval maps have coded codings

h(C) can be made arbitrarily small ⇒ unique MME

Edit approachable by specification? Hölder ⇒ hyperbolic?

General conditions for Hölder to imply hyperbolic

True for β-shift, S-gap shift

Is it true whenever L edit approachable by specification?

Examples where Hölder does not imply hyperbolic

Candidate: context-free shift G = {01n2n | n ∈ N}
Not edit approachable by specification (Scott Conrad)

Non-hyperbolic Hölder potential?
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