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The talk in one slide

Hadamard–Perron theorem: linear data governs non-linear
behaviour on small scales

Consequences: SRB measures, closing lemmas, etc.

Uniform hyperbolicity: well-understood, rare

Non-uniform hyp.: understood if asymptotic behaviour known

Depends on ergodic theory/infinite information

SRB measure: need measure-independent approach

Closing lemma: want finite-information

Get these with effective hyperbolicity
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The simplest case

Assumption: f : Rd → Rd with f (0) = 0 and Df (0) hyperbolic

E s stable subspace, Eu unstable subspace

|Df (0)(v s)| ≤ eλ
s |v s | and |Df (0)(vu)| ≥ eλ

u |vu|
max(λs , 0) < λu

Conclusion: There exists W u = graphψ
tangent to Eu such that

‖Dψ(xu)‖ ≈ 0 for xu ≈ 0

x , y ∈W u ⇒
d(f −nx , f −ny) ≤ e−nχd(x , y)

χ < λu is arbitrary

Proof uses graph transform W0 7→W1 7→W2 · · ·
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Sequences of germs

Away from fixed points, use local coordinates to get sequence fn
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Uniform hyperbolicity

Assumption: fn : Rd → Rd with fn(0) = 0

E s,u
n invariant under Dfn(0), uniformly transverse

|Dfn(0)(v s)| ≤ eλ
s |v s | and |Dfn(0)(vu)| ≥ eλ

u |vu|
max(λs , 0) < λu

Conclusion: There exists W u
n = graphψn

tangent to Eu
n such that

‖Dψn(xu)‖ ≤ γ for |xu| ≤ r

x , y ∈W u ⇒
d(f −nx , f −ny) ≤ e−nχd(x , y)

χ < λu is arbitrary
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SRB measures

f : M 	 a diffeo, U a trapping region: f (U) ⊂ U

Describe asymptotics of Lebesgue-typical trajectories

Absolutely continuous invariant measure? May not exist

Look for SRB measure: non-zero Lyapunov exponents and
absolutely continuous on unstable manifolds

Need Hadamard–Perron theorem to define. How to find?

m = Lebesgue measure (volume) on some admissible manifold

Cesàro averages µn = 1
n

∑n−1
k=0 f k

∗ m, then µnj → µ invariant

Is µ SRB? Yes if f is uniformly hyperbolic – continuous splitting
TxM = Eu(x)⊕ E s(x), uniform expansion/contraction
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Closing lemma

Orbit segment x , f (x), . . . , f p(x) ≈ x . Periodic point nearby?

f p induces graph transform on space of u-admissible manifolds

Contraction ⇒ fixed point, similarly for s-admissibles

Intersection is periodic point
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Non-uniform hyperbolicity

Assumption: fn : Rd → Rd is C 1+α with fn(0) = 0

E s,u
n invariant under Dfn(0), not uniformly transverse

|Dfn(0)(v s)| ≤ eλ
s
n |v s | and |Dfn(0)(vu)| ≥ eλ

u
n |vu|

lim 1
n

∑
λsk < 0 < χ < lim 1

n

∑
λuk

Conclusion: There exists W u
n = graphψn tangent to Eu

n such that

‖Dψn(xu)‖ ≤ γ for |xu| ≤ r/C

x , y ∈W u ⇒ d(f −nx , f −ny) ≤ Ce−nχd(x , y)

C depends on asymptotic behaviour of λs,un and θn

Non-uniform set Λ =
⋃

C ΛC is union of regular sets (Pesin sets)

µ hyperbolic invariant ⇒ µ(Λ) = 1

Λ invariant, non-compact, ΛC compact, non-invariant
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SRB measures and closing lemmas

NUH lets us define SRB measures, but not find them

Recall Cesàro averages µn – need to know how big the images
of admissible manifolds are at f n(x), so need good recurrence
properties to ΛC

Recurrence properties come from ergodic theory

Closing lemma for NUH as long as both x , f p(x) ∈ ΛC and
d(f p(x), x) < ε(C ).

Determining C requires an infinite amount of information –
knowledge of entire trajectory
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Effective hyperbolicity

fn : Eu
n ⊕ E s

n → Eu
n+1 ⊕ E s

n+1 a C 1+α germ with fn(0) = 0

|Dfn(0)(v s)| ≤ eλ
s
n |v s | and |Dfn(0)(vu)| ≥ eλ

u
n |vu|

θn = ](Eu
n ,E

s
n ), write B(θ) = {n | θn < θ}

Splitting is dominated if λsn < λun.

Defect from domination: ∆n = max(0, 1
α(λsn − λun))

Definition

{fn | n ≥ 0} is effectively hyperbolic if

1 limθ→0 δ(B(θ)) = 0, and

2 limn→∞
1
n

∑n−1
k=0(λuk −∆k) > 0.
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Return to large scale

Sequence of admissible manifolds Wn = graphψn, through 0 and
tangent to Eu

n , with fn(Wn) ⊃Wn+1

ψn : Bu
n (rn)→ E s

n , think of rn as ‘size’ of admissible manifold
|Dψn|α ≤ κn, think of κn as ‘curvature’
κnrαn ≤ γ ⇒ ‖Dψn‖ ≤ γ

Theorem (C.–Pesin)

If {fn | n ≥ 0} is effectively hyperbolic, then there exists
r > 0, κ > 0, and Γ ⊂ N such that

1 δ(Γ) > 0, and

2 for every n ∈ Γ we have rn ≥ r and κn ≤ κ.

Γ is the set of effective hyperbolic times:

n−1∑
k=m

λek ≥ (n −m)χ for all 0 ≤ m < n
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Construction of SRB measures

f a C 1+α diffeo, U a trapping region, X ⊂ U an invariant set with
invariant cone families Ku,s(x)

S = {x ∈ X | forward trajectory of x is effectively hyperbolic}
∩{x ∈ X | K s(x) has negative Lyapunov exponent}

Theorem (C.–Dolgopyat–Pesin)

If Leb(S) > 0 then f has an SRB measure.
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Explicit computation of constants

Consider finite orbit segment {fn | 0 ≤ n < p}
L = max(|Dfn|α, | log( θn+1

θn
)|, | log(‖Dfn(0)(v)‖

‖v‖ )|)
λen = λun −∆n − L1{θn<θ}

Mu
n = max0≤m<n

(
(n −m)χu −

∑n−1
k=m λ

e
k

)
, similarly Ms

n

Definition

Orbit segment is completely effectively hyperbolic with parameters
M, θ > 0 and rates χs < 0 < χu if θ0, θp > θ and

M ≥ max(Mu
p ,M

s
p,M

u
0 ,M

s
0),

M ≥ Mu
n +

n−1∑
k=0

(λsk − χs) for all 0 ≤ n ≤ p,

and similarly for Ms
n.
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Finite-information closing lemma

Theorem (C.–Pesin)

Fix parameters M, θ and rates χs,u. Given δ > 0 there is ε > 0 and
p0 ∈ N such that if

1 p ≥ p0 and {x , . . . , f p(x)} is completely effectively hyperbolic
with these parameters and rates;

2 d(x , f px) < ε, and Eσ ⊂ Kσ(x) have d(Df p(Eσ),Eσ) < ε,

then there exists a hyperbolic periodic point z = f pz such that
d(x , z) < δ.
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Example – sheared Katok map

f an Axiom A surface diffeo, p a hyperbolic fixed point

Near p the map f is time-1 for linear vector field ẋ = Ax

Slow-down: ẋ = Axr ε where r = d(x , p) (Katok example)

Add shear term: if A = ( γ 0
0 −β ) then get ODEs

ẋ = γr εx + y

ẏ = −βr εy

Parameters M for effective hyperbolicity can be computed directly
from how much time orbit segment spends near p.

SRB measure exists (takes some argument to show
Leb(S) > 0)

Closing lemma applies based on time spent near shear

Thanks for listening!
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