▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Effective hyperbolicity and applications of new Hadamard–Perron theorems

Vaughn Climenhaga University of Houston

March 3, 2013

Joint work with Yakov Pesin (Penn State)

The talk in one slide

Hadamard–Perron theorem: linear data governs non-linear behaviour on small scales

Consequences: SRB measures, closing lemmas, etc.

Uniform hyperbolicity: well-understood, rare

Non-uniform hyp.: understood if asymptotic behaviour known

- Depends on ergodic theory/infinite information
- SRB measure: need measure-independent approach
- Closing lemma: want finite-information

Get these with effective hyperbolicity

The simplest case

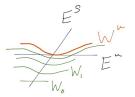
Assumption: $f : \mathbb{R}^d \to \mathbb{R}^d$ with f(0) = 0 and Df(0) hyperbolic

- E^s stable subspace, E^u unstable subspace
- $|Df(0)(v^s)| \le e^{\lambda^s} |v^s|$ and $|Df(0)(v^u)| \ge e^{\lambda^u} |v^u|$
- $\max(\lambda^s, 0) < \lambda^u$

Conclusion: There exists $W^u = \operatorname{graph} \psi$ tangent to E^u such that

- $\|D\psi(x^u)\| \approx 0$ for $x^u \approx 0$
- $x, y \in W^u \Rightarrow$ $d(f^{-n}x, f^{-n}y) \le e^{-n\chi}d(x, y)$
- $\chi < \lambda^u$ is arbitrary

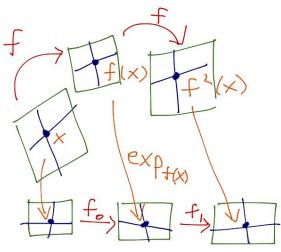
Proof uses graph transform $W_0 \mapsto W_1 \mapsto W_2 \cdots$



Effective hyperbolicity 000000

Sequences of germs

Away from fixed points, use local coordinates to get sequence f_n



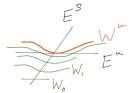
Uniform hyperbolicity

Assumption: $f_n \colon \mathbb{R}^d \to \mathbb{R}^d$ with $f_n(0) = 0$

- $E_n^{s,u}$ invariant under $Df_n(0)$, uniformly transverse
- $|Df_n(0)(v^s)| \le e^{\lambda^s} |v^s|$ and $|Df_n(0)(v^u)| \ge e^{\lambda^u} |v^u|$
- $\max(\lambda^s, 0) < \lambda^u$

Conclusion: There exists $W_n^u = \operatorname{graph} \psi_n$ tangent to E_n^u such that

- $\|D\psi_n(x^u)\| \leq \gamma$ for $|x^u| \leq r$
- $x, y \in W^u \Rightarrow$ $d(f^{-n}x, f^{-n}y) \le e^{-n\chi}d(x, y)$
- $\chi < \lambda^u$ is arbitrary



SRB measures

- $f: M \odot$ a diffeo, U a trapping region: $\overline{f(U)} \subset U$
 - Describe asymptotics of Lebesgue-typical trajectories
 - Absolutely continuous invariant measure? May not exist
 - Look for SRB measure: non-zero Lyapunov exponents and absolutely continuous on unstable manifolds

Need Hadamard-Perron theorem to define. How to find?

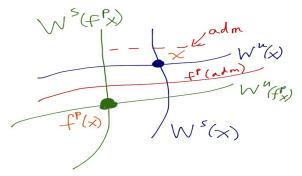
- m = Lebesgue measure (volume) on some admissible manifold
- Cesàro averages $\mu_n = \frac{1}{n} \sum_{k=0}^{n-1} f_*^k m$, then $\mu_{n_j} \to \mu$ invariant

Is μ SRB? Yes if f is uniformly hyperbolic – continuous splitting $T_x M = E^u(x) \oplus E^s(x)$, uniform expansion/contraction

Effective hyperbolicity 000000

Closing lemma

Orbit segment $x, f(x), \ldots, f^p(x) \approx x$. Periodic point nearby?



 f^{p} induces graph transform on space of *u*-admissible manifolds

- Contraction \Rightarrow fixed point, similarly for *s*-admissibles
- Intersection is periodic point

Non-uniform hyperbolicity

Assumption: $f_n : \mathbb{R}^d \to \mathbb{R}^d$ is $C^{1+\alpha}$ with $f_n(0) = 0$

- $E_n^{s,u}$ invariant under $Df_n(0)$, **not** uniformly transverse
- $|Df_n(0)(v^s)| \le e^{\lambda_n^s} |v^s|$ and $|Df_n(0)(v^u)| \ge e^{\lambda_n^u} |v^u|$
- $\overline{\lim} \frac{1}{n} \sum \lambda_k^s < 0 < \chi < \underline{\lim} \frac{1}{n} \sum \lambda_k^u$

Conclusion: There exists $W_n^u = \operatorname{graph} \psi_n$ tangent to E_n^u such that

- $\|D\psi_n(x^u)\| \leq \gamma$ for $|x^u| \leq r/C$
- $x, y \in W^u \Rightarrow d(f^{-n}x, f^{-n}y) \leq Ce^{-n\chi}d(x, y)$
- C depends on asymptotic behaviour of $\lambda_n^{s,u}$ and θ_n

Non-uniform set $\Lambda = \bigcup_C \Lambda_C$ is union of regular sets (Pesin sets)

- μ hyperbolic invariant $\Rightarrow \mu(\Lambda) = 1$
- Λ invariant, non-compact, Λ_C compact, non-invariant

SRB measures and closing lemmas

NUH lets us define SRB measures, but not find them

- Recall Cesàro averages μ_n need to know how big the images of admissible manifolds are at fⁿ(x), so need good recurrence properties to Λ_C
- Recurrence properties come from ergodic theory

Closing lemma for NUH as long as both $x, f^{p}(x) \in \Lambda_{C}$ and $d(f^{p}(x), x) < \varepsilon(C)$.

• Determining *C* requires an infinite amount of information – knowledge of entire trajectory

Effective hyperbolicity

$$f_n \colon E_n^u \oplus E_n^s o E_{n+1}^u \oplus E_{n+1}^s$$
 a C^{1+lpha} germ with $f_n(0) = 0$

•
$$|Df_n(0)(v^s)| \le e^{\lambda_n^s} |v^s|$$
 and $|Df_n(0)(v^u)| \ge e^{\lambda_n^u} |v^u|$

•
$$\theta_n = \measuredangle (E_n^u, E_n^s)$$
, write $B(\theta) = \{n \mid \theta_n < \theta\}$

Splitting is dominated if $\lambda_n^s < \lambda_n^u$.

Defect from domination: $\Delta_n = \max(0, \frac{1}{\alpha}(\lambda_n^s - \lambda_n^u))$

Definition

{ $f_n \mid n \ge 0$ } is effectively hyperbolic if a) $\lim_{\theta \to 0} \overline{\delta}(B(\theta)) = 0$, and b) $\frac{\lim_{\theta \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} (\lambda_k^u - \Delta_k) > 0.$

Return to large scale

Sequence of admissible manifolds $W_n = \operatorname{graph} \psi_n$, through 0 and tangent to E_n^u , with $f_n(W_n) \supset W_{n+1}$

- $\psi_n: B_n^u(r_n) \to E_n^s$, think of r_n as 'size' of admissible manifold
- $|D\psi_n|_{\alpha} \leq \kappa_n$, think of κ_n as 'curvature'
- $\kappa_n r_n^{\alpha} \leq \gamma \Rightarrow \| D \psi_n \| \leq \gamma$

Theorem (C.–Pesin)

If $\{f_n \mid n \ge 0\}$ is effectively hyperbolic, then there exists $r > 0, \kappa > 0$, and $\Gamma \subset \mathbb{N}$ such that

- $\underline{\delta}(\Gamma) > 0$, and
- **2** for every $n \in \Gamma$ we have $r_n \ge r$ and $\kappa_n \le \kappa$.

 Γ is the set of effective hyperbolic times:

$$\sum_{k=m}^{n-1} \lambda_k^e \ge (n-m)\chi \text{ for all } 0 \le m < n$$

Construction of SRB measures

f a $C^{1+\alpha}$ diffeo, U a trapping region, $X \subset U$ an invariant set with invariant cone families $K^{u,s}(x)$

• $S = \{x \in X \mid \text{forward trajectory of } x \text{ is effectively hyperbolic}\}$ $\cap \{x \in X \mid K^s(x) \text{ has negative Lyapunov exponent}\}$

Theorem (C.–Dolgopyat–Pesin)

If Leb(S) > 0 then f has an SRB measure.

Explicit computation of constants

Consider finite orbit segment $\{f_n \mid 0 \le n < p\}$

•
$$L = \max(|Df_n|_{\alpha}, |\log(\frac{\theta_{n+1}}{\theta_n})|, |\log(\frac{\|Df_n(0)(v)\|}{\|v\|})|)$$

•
$$\lambda_n^e = \lambda_n^u - \Delta_n - L \mathbf{1}_{\{\theta_n < \theta\}}$$

• $M_n^u = \max_{0 \le m < n} \left((n-m)\chi^u - \sum_{k=m}^{n-1} \lambda_k^e \right)$, similarly M_n^s

Definition

Orbit segment is completely effectively hyperbolic with parameters $M, \theta > 0$ and rates $\chi^s < 0 < \chi^u$ if $\theta_0, \theta_p > \theta$ and

$$egin{aligned} M &\geq \max(M_p^u, M_p^s, M_0^u, M_0^s), \ M &\geq M_n^u + \sum_{k=0}^{n-1} (\lambda_k^s - \chi^s) ext{ for all } 0 \leq n \leq p. \end{aligned}$$

and similarly for M_n^s .

Finite-information closing lemma

Theorem (C.–Pesin)

Fix parameters M, θ and rates $\chi^{s,u}$. Given $\delta > 0$ there is $\varepsilon > 0$ and $p_0 \in \mathbb{N}$ such that if

p ≥ p₀ and {x,..., f^p(x)} is completely effectively hyperbolic with these parameters and rates;

 $d(x, f^{p}x) < \varepsilon, \text{ and } E^{\sigma} \subset K^{\sigma}(x) \text{ have } d(Df^{p}(E^{\sigma}), E^{\sigma}) < \varepsilon,$

then there exists a hyperbolic periodic point $z = f^p z$ such that $d(x, z) < \delta$.

Example – sheared Katok map

f an Axiom A surface diffeo, p a hyperbolic fixed point

- Near p the map f is time-1 for linear vector field $\dot{x} = Ax$
- Slow-down: $\dot{x} = Axr^{\varepsilon}$ where r = d(x, p) (Katok example)
- Add shear term: if $A = \begin{pmatrix} \gamma & 0 \\ 0 & -\beta \end{pmatrix}$ then get ODEs

$$\dot{x} = \gamma r^{\varepsilon} x + y$$
$$\dot{y} = -\beta r^{\varepsilon} y$$

Parameters M for effective hyperbolicity can be computed directly from how much time orbit segment spends near p.

- SRB measure exists (takes some argument to show Leb(S) > 0)
- Closing lemma applies based on time spent near shear

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへの

Example – sheared Katok map

f an Axiom A surface diffeo, p a hyperbolic fixed point

- Near p the map f is time-1 for linear vector field $\dot{x} = Ax$
- Slow-down: $\dot{x} = Axr^{\varepsilon}$ where r = d(x, p) (Katok example)
- Add shear term: if $A = \begin{pmatrix} \gamma & 0 \\ 0 & -\beta \end{pmatrix}$ then get ODEs

$$\dot{x} = \gamma r^{\varepsilon} x + y$$
$$\dot{y} = -\beta r^{\varepsilon} y$$

Parameters M for effective hyperbolicity can be computed directly from how much time orbit segment spends near p.

- SRB measure exists (takes some argument to show Leb(S) > 0)
- Closing lemma applies based on time spent near shear

Thanks for listening!

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへの

Example – sheared Katok map

f an Axiom A surface diffeo, p a hyperbolic fixed point

- Near p the map f is time-1 for linear vector field $\dot{x} = Ax$
- Slow-down: $\dot{x} = Axr^{\varepsilon}$ where r = d(x, p) (Katok example)
- Add shear term: if $A = \begin{pmatrix} \gamma & 0 \\ 0 & -\beta \end{pmatrix}$ then get ODEs

$$\dot{x} = \gamma r^{\varepsilon} x + y$$
$$\dot{y} = -\beta r^{\varepsilon} y$$

Parameters M for effective hyperbolicity can be computed directly from how much time orbit segment spends near p.

- SRB measure exists (takes some argument to show Leb(S) > 0)
- Closing lemma applies based on time spent near shear

Thanks for listening!