Introduction	Hadamard–Perron theorems	SRB measures	Shadowing

Effective hyperbolicity and SRB measures

Vaughn Climenhaga University of Houston

March 14, 2015

Joint work with Yakov Pesin (PSU) and Dmitry Dolgopyat (Maryland)

Introduction	Hadamard–Perron theorems	SRB measures	Shadowing
0000			

The big picture: uniform hyperbolicity

Goal: Existence, uniqueness, and statistical properties for physical (SRB) measures and equilibrium states for diffeo $f: M \odot$

SRB measures

Shadowing 000

The big picture: non-uniform hyperbolicity

Introduction	Hadamard–Perron theorems	SRB measures	Shadowing
0000	000	00	000

The big picture: dominated splittings

Uniform geometry ($TM = E^1 \oplus E^2$), non-uniform dynamics

Introduction 0000 SRB measures

The big picture: non-uniform hyperbolicity again

Use local coords around orbit of x, get $f_n : \mathbb{R}^d \odot$ with $f_n(0) = 0$

- $E_n^{s,u}$ invariant under $Df_n(0)$, uniformly transverse
- $\lambda_n^s := \log \|Df_n(0)|_{E^s}\| < 0 < \lambda_n^u := \log \|Df_n(0)|_{E^u}^{-1}\|^{-1}$
- An admissible manifold of size r is the graph of $\psi_n \colon B(0,r) \cap E_n^u \to E_n^s$ with $\|D\psi_n\| \le \gamma$.
- Admissibles stay big: W_n admissible of size $r \Rightarrow$ some $\hat{W}_n \subset W_n$ has $f_n(\hat{W}_n)$ admissible of size r
- Admissibles expand: $x, y \in W_n \Rightarrow d(f_n x, f_n y) > e^{\chi} d(x, y)$ for $\chi < |\lambda_n^{s,u}|$.

Recover usual Hadamard–Perron by taking $W_0^u = \lim_{n \to \infty} f_{-n,0}(\hat{W}_{-n})$ where $f_{i,j} = f_{j-1} \circ \cdots \circ f_{i+1} \circ f_i$

Introduction	Hadamard–Perron theorems	SRB measures	Shadowing
0000	○●○	00	000

Non-uniform hyperbolicity

Now assume $\theta_n = \angle (E_n^u, E_n^s)$ can be arbitrarily small, and $\lambda_n^{s,u}$ can be anything. Hadamard–Perron type results available from Pesin theory, but size of admissible and rate of expansion can decay.

- Size $\approx r/C_n$, backwards contraction by $f_{k,n}^{-1} \approx C_n e^{-(n-k)\chi}$
- C_n depends on asymptotic behaviour of $\lambda_i^{s,u}, \theta_j$

We want a result that depends only on finitely many iterates

Dominated splitting: $\theta_n \gg 0$, $\lambda_n^s < \lambda_n^u$ (but sign can vary)

- *n* a χ -hyperbolic time if $\sum_{j=k}^{n-1} \lambda_j^u > (n-k)\chi$ for all $0 \le k < n$
- $f_{0,n}(\hat{W}_0)$ 'big' (size r) at hyperbolic times
- If x, y lie in an admissible $f_{0,n}(W_0)$ and $|\lambda_i^{s,u}| > \chi$, then $d(f_{k,n}^{-1}x, f_{k,n}^{-1}y) < e^{-(n-k)\chi}d(x, y)$ for all $0 \le k < n$

Introduction	Hadamard–Perron theorems	SRB measures	Shadowing
	000		

Effective hyperbolicity

Now let $\lambda_n^{s,u}$, θ_n be arbitrary and assume f_n is C^2 . Consider

$$\begin{split} \Delta_n &= \max(0, \ \lambda_n^s - \lambda_n^u) \quad \text{(defect from domination)}, \\ L &= \sup_n |\log(\theta_{n+1}/\theta_n)|. \end{split}$$

Fix $\bar{\theta} > 0$ and put $\lambda_n^e = \begin{cases} \lambda_n^u - \Delta_n & \theta_n > \bar{\theta}, \\ -L & \text{otherwise.} \end{cases}$ • Effective hyp. time: $\sum_{j=k}^{n-1} \lambda_j^e > (n-k)\chi$ for all $0 \le k < n$.

Theorem (C.–Pesin)

If n is an effective hyperbolic time for $\{f_j\}$ then $f_{0,n}(\hat{W}_0)$ is large and has uniform backwards contraction for all $f_{k,n}$, $0 \le k < n$.

Also get control of 'nearby admissibles' not passing through 0.

Introduction	Hadamard–Perron theorems	SRB measures	Shadowing
0000	000	●0	000

 μ an SRB measure for f if

- hyperbolic: all Lyapunov exponents non-zero
- absolutely continuous conditionals on unstable manifolds
 SRB measures are physical: describe Lebesgue-typical trajectories

Natural method to build SRB in uniformly hyperbolic setting

- m = Lebesgue measure (volume) on some admissible manifold
- Cesàro averages $\mu_n = \frac{1}{n} \sum_{k=0}^{n-1} f_*^k m$, then $\mu_{n_j} \to \mu$ invariant

Pesin–Sinai, Bonatti–Viana: extends to $E^{cs} \oplus E^{u}$ if

$$\{x \mid \overline{\lim} \, \frac{1}{n} \sum_{k=0}^{n-1} \lambda_k^s(x) < 0\}$$

has positive volume. Alves–Bonatti–Viana did the case $E^s \oplus E^{cu}$.

Introduction	Hadamard–Perron theorems	SRB measures	Shadowing
0000	000	0•	000

Cannot use Pesin theory to build an SRB measure.

• Start with admissible W, let $W_n = f^n(W)$.

- To work with μ_n must know scale where W_n 'close to unstable', and have contraction so densities behave.
- These are good when C_n is small.
- Need good recurrence properties to $\Lambda_C = \{n \mid C_n \leq C\}.$
- Recurrence properties come from ergodic theory.

For small angles and failure of domination, use effective hyp.

$$\begin{split} \lambda(x) &= \min(\lambda^{u}(x) - \Delta(x), -\lambda^{s}(x)), \\ Q(x,\bar{\theta}) &= \{n \in \mathbb{N} \mid \angle (E^{u}(f^{n}x), E^{s}(f^{n}x)) < \bar{\theta}\}, \\ S &= \{x \mid \underline{\lim} \ \frac{1}{n} \sum_{k=0}^{n-1} \lambda(f^{k}x) > 0 \text{ and } \lim_{\bar{\theta} \to 0} \overline{d}(Q(x,\bar{\theta})) = 0\} \end{split}$$

Theorem (C.–Dolgopyat–Pesin)

If Leb(S) > 0 then f has an SRB measure.

Introduction	Hadamard–Perron theorems	SRB measures	Shadowing
			000

Closing lemma – uniform hyperbolicity

Orbit segment $x, f(x), \ldots, f^p(x) \approx x$. Periodic point nearby?

 f^{p} induces graph transform on space of *u*-admissible manifolds

- Contraction \Rightarrow fixed point, similarly for *s*-admissibles
- Intersection is periodic point

Introduction	Hadamard–Perron theorems	SRB measures	Shadowing
0000	000	00	000

Effective hyperbolicity – explicit constants

Consider finite orbit segment $\{f_n \mid 0 \le n < p\}$

•
$$L = \max(|Df_n|_{\alpha}, |\log(\frac{\theta_{n+1}}{\theta_n})|, |\log(\frac{\|Df_n(0)(v)\|}{\|v\|})|)$$

• $\lambda_n^e = \lambda_n^u - \Delta_n - L\mathbf{1}_{\{\theta_n < \overline{\theta}\}}$
• $M_n^u = \max_{0 \le m < n} \left((n-m)\chi^u - \sum_{k=m}^{n-1} \lambda_k^e \right)$, similarly M_n^s

Definition

Orbit segment is completely effectively hyperbolic with parameters $M, \theta > 0$ and rates $\chi^s < 0 < \chi^u$ if $\theta_0, \theta_p > \theta$ and

$$egin{aligned} &M \geq \max(M_p^u, M_p^s, M_0^u, M_0^s), \ &M \geq M_n^u + \sum_{k=0}^{n-1} (\lambda_k^s - \chi^s) ext{ for all } 0 \leq n \leq p, \end{aligned}$$

and similarly for M_n^s .

SRB measures

Finite-information closing lemma

Theorem (C.–Pesin)

Fix parameters M, θ and rates $\chi^{s,u}$. Given $\delta > 0$ there is $\varepsilon > 0$ and $p_0 \in \mathbb{N}$ such that if

p ≥ p₀ and {x,..., f^p(x)} is completely effectively hyperbolic with these parameters and rates;

 $d(x, f^{p}x) < \varepsilon, \text{ and } E^{\sigma} \subset K^{\sigma}(x) \text{ have } d(Df^{p}(E^{\sigma}), E^{\sigma}) < \varepsilon,$

then there exists a hyperbolic periodic point $z = f^p z$ such that $d(x, z) < \delta$.