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The big picture: uniform hyperbolicity

Goal: Existence, uniqueness, and statistical properties for physical
(SRB) measures and equilibrium states for diffeo f : M 	
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The big picture: non-uniform hyperbolicity
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The big picture: dominated splittings

Uniform geometry (TM = E 1 ⊕ E 2), non-uniform dynamics

HP at “hyper-
bolic times”
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The big picture: non-uniform hyperbolicity again

HP for “effective
hyperbolicity”
(C.–Pesin)
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Uniform hyperbolicity

Use local coords around orbit of x , get fn : Rd 	 with fn(0) = 0

E s,u
n invariant under Dfn(0), uniformly transverse

λsn := log ‖Dfn(0)|E s‖ < 0 < λun := log ‖Dfn(0)|−1
Eu ‖−1

An admissible manifold of size r is the graph of
ψn : B(0, r) ∩ Eu

n → E s
n with ‖Dψn‖ ≤ γ.

Admissibles stay big: Wn admissible of size r ⇒ some
Ŵn ⊂Wn has fn(Ŵn) admissible of size r

Admissibles expand: x , y ∈Wn ⇒ d(fnx , fny) > eχd(x , y)
for χ <

∣∣λs,un

∣∣.
Recover usual Hadamard–Perron by taking W u

0 = lim
n→∞

f−n,0(Ŵ−n)

where fi ,j = fj−1 ◦ · · · ◦ fi+1 ◦ fi
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Non-uniform hyperbolicity

Now assume θn = ∠(Eu
n ,E

s
n ) can be arbitrarily small, and λs,un can

be anything. Hadamard–Perron type results available from Pesin
theory, but size of admissible and rate of expansion can decay.

Size ≈ r/Cn, backwards contraction by f −1
k,n ≈ Cne

−(n−k)χ

Cn depends on asymptotic behaviour of λs,uj , θj

We want a result that depends only on finitely many iterates

Dominated splitting: θn � 0, λsn < λun (but sign can vary)

n a χ-hyperbolic time if
∑n−1

j=k λ
u
j > (n− k)χ for all 0 ≤ k < n

f0,n(Ŵ0) ‘big’ (size r) at hyperbolic times

If x , y lie in an admissible f0,n(W0) and
∣∣λs,ui

∣∣ > χ, then

d(f −1
k,n x , f

−1
k,n y) < e−(n−k)χd(x , y) for all 0 ≤ k < n
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Effective hyperbolicity

Now let λs,un , θn be arbitrary and assume fn is C 2. Consider

∆n = max(0, λsn − λun) (defect from domination),

L = sup
n
| log(θn+1/θn)|.

Fix θ̄ > 0 and put λen =

{
λun −∆n θn > θ̄,

−L otherwise.

Effective hyp. time:
∑n−1

j=k λ
e
j > (n − k)χ for all 0 ≤ k < n.

Theorem (C.–Pesin)

If n is an effective hyperbolic time for {fj} then f0,n(Ŵ0) is large
and has uniform backwards contraction for all fk,n, 0 ≤ k < n.

Also get control of ‘nearby admissibles’ not passing through 0.
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µ an SRB measure for f if

hyperbolic: all Lyapunov exponents non-zero

absolutely continuous conditionals on unstable manifolds

SRB measures are physical: describe Lebesgue-typical trajectories

Natural method to build SRB in uniformly hyperbolic setting

m = Lebesgue measure (volume) on some admissible manifold

Cesàro averages µn = 1
n

∑n−1
k=0 f

k
∗ m, then µnj → µ invariant

Pesin–Sinai, Bonatti–Viana: extends to E cs ⊕ Eu if

{x | lim 1
n

∑n−1

k=0
λsk(x) < 0}

has positive volume. Alves–Bonatti–Viana did the case E s ⊕ E cu.
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Cannot use Pesin theory to build an SRB measure.

Start with admissible W , let Wn = f n(W ).

To work with µn must know scale where Wn ‘close to
unstable’, and have contraction so densities behave.

These are good when Cn is small.

Need good recurrence properties to ΛC = {n | Cn ≤ C}.
Recurrence properties come from ergodic theory.

For small angles and failure of domination, use effective hyp.

λ(x) = min(λu(x)−∆(x),−λs(x)),

Q(x , θ̄) = {n ∈ N | ∠(Eu(f nx),E s(f nx)) < θ̄},
S = {x | lim 1

n

∑n−1
k=0 λ(f kx) > 0 and limθ̄→0 d(Q(x , θ̄)) = 0}

Theorem (C.–Dolgopyat–Pesin)

If Leb(S) > 0 then f has an SRB measure.
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Closing lemma – uniform hyperbolicity

Orbit segment x , f (x), . . . , f p(x) ≈ x . Periodic point nearby?

f p induces graph transform on space of u-admissible manifolds

Contraction ⇒ fixed point, similarly for s-admissibles

Intersection is periodic point
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Effective hyperbolicity – explicit constants

Consider finite orbit segment {fn | 0 ≤ n < p}
L = max(|Dfn|α, | log( θn+1

θn
)|, | log(‖Dfn(0)(v)‖

‖v‖ )|)
λen = λun −∆n − L1{θn<θ̄}

Mu
n = max0≤m<n

(
(n −m)χu −

∑n−1
k=m λ

e
k

)
, similarly Ms

n

Definition

Orbit segment is completely effectively hyperbolic with parameters
M, θ > 0 and rates χs < 0 < χu if θ0, θp > θ and

M ≥ max(Mu
p ,M

s
p,M

u
0 ,M

s
0),

M ≥ Mu
n +

n−1∑
k=0

(λsk − χs) for all 0 ≤ n ≤ p,

and similarly for Ms
n.
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Finite-information closing lemma

Theorem (C.–Pesin)

Fix parameters M, θ and rates χs,u. Given δ > 0 there is ε > 0 and
p0 ∈ N such that if

1 p ≥ p0 and {x , . . . , f p(x)} is completely effectively hyperbolic
with these parameters and rates;

2 d(x , f px) < ε, and Eσ ⊂ Kσ(x) have d(Df p(Eσ),Eσ) < ε,

then there exists a hyperbolic periodic point z = f pz such that
d(x , z) < δ.
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