Motivating examples in dynamical systems

Vaughn Climenhaga

University of Houston

October 16, 2012

A pretty picture

Logistic map:
$$f(x) = \lambda x(1-x)$$
 $0 \le \lambda \le 4$

 $\lambda = 0.5$

- Maps the interval [0, 1] into itself
- Iterate over and over again: represents state of a dynamical system evolving in time

Logistic map:
$$f(x) = \lambda x(1-x)$$
 $0 \le \lambda \le 4$

 $\lambda = 1$

- Maps the interval [0, 1] into itself
- Iterate over and over again: represents state of a dynamical system evolving in time

Logistic map:
$$f(x) = \lambda x(1-x)$$
 $0 \le \lambda \le 4$

 $\lambda = 1.5$

 Iterate over and over again: represents state of a dynamical system evolving in time

Logistic map:
$$f(x) = \lambda x(1-x)$$
 $0 \le \lambda \le 4$

 $\lambda = 2$

- Maps the interval [0, 1] into itself
- Iterate over and over again: represents state of a dynamical system evolving in time

Logistic map:
$$f(x) = \lambda x(1-x)$$
 $0 \le \lambda \le 4$

 $\lambda = 2.5$

- Maps the interval [0, 1] into itself
- Iterate over and over again: represents state of a dynamical system evolving in time

Logistic map:
$$f(x) = \lambda x(1-x)$$
 $0 \le \lambda \le 4$

 $\lambda = 2.8$

- Maps the interval [0, 1] into itself
- Iterate over and over again: represents state of a dynamical system evolving in time

Logistic map:
$$f(x) = \lambda x(1-x)$$
 $0 \le \lambda \le 4$

$$\lambda = 3$$

• Maps the interval [0, 1] into itself

 Iterate over and over again: represents state of a dynamical system evolving in time

Logistic map:
$$f(x) = \lambda x(1-x)$$
 $0 \le \lambda \le 4$

 $\lambda = 3.2$

 Iterate over and over again: represents state of a dynamical system evolving in time

Logistic map:
$$f(x) = \lambda x(1-x)$$
 $0 \le \lambda \le 4$

 $\lambda = 3.5$

- Maps the interval [0, 1] into itself
- Iterate over and over again: represents state of a dynamical system evolving in time

Logistic map:
$$f(x) = \lambda x(1-x)$$
 $0 \le \lambda \le 4$

 $\lambda = 3.8$

 Iterate over and over again: represents state of a dynamical system evolving in time

Logistic map:
$$f(x) = \lambda x(1-x)$$
 $0 \le \lambda \le 4$

 $\lambda = 4$

- Maps the interval [0, 1] into itself
- Iterate over and over again: represents state of a dynamical system evolving in time

Logistic map:
$$f(x) = \lambda x(1-x)$$
 $0 \le \lambda \le 4$

 $\lambda = 0.5$

- Maps the interval [0, 1] into itself
- Iterate over and over again: represents state of a dynamical system evolving in time

Logistic map:
$$f(x) = \lambda x(1-x)$$
 $0 \le \lambda \le 4$

 $\lambda = 1$

- Maps the interval [0, 1] into itself
- Iterate over and over again: represents state of a dynamical system evolving in time

Logistic map:
$$f(x) = \lambda x(1-x)$$
 $0 \le \lambda \le 4$

 $\lambda = 1.5$

 Iterate over and over again: represents state of a dynamical system evolving in time

Logistic map:
$$f(x) = \lambda x(1-x)$$
 $0 \le \lambda \le 4$

 $\lambda = 2$

- Maps the interval [0, 1] into itself
- Iterate over and over again: represents state of a dynamical system evolving in time

Logistic map:
$$f(x) = \lambda x(1-x)$$
 $0 \le \lambda \le 4$

 $\lambda = 2.5$

- Maps the interval [0, 1] into itself
- Iterate over and over again: represents state of a dynamical system evolving in time

Logistic map:
$$f(x) = \lambda x(1-x)$$
 $0 \le \lambda \le 4$

 $\lambda = 2.8$

 Iterate over and over again: represents state of a dynamical system evolving in time

Logistic map:
$$f(x) = \lambda x(1-x)$$
 $0 \le \lambda \le 4$

$$\lambda = 3$$

• Maps the interval [0, 1] into itself

 Iterate over and over again: represents state of a dynamical system evolving in time

Logistic map:
$$f(x) = \lambda x(1-x)$$
 $0 \le \lambda \le 4$

 $\lambda = 3.2$

What is the long-term behaviour, and (how) does it depend on λ ?

evolving in time

• Maps the interval [0, 1]

Iterate over and over

again: represents state of a dynamical system

into itself

Logistic map:
$$f(x) = \lambda x(1-x)$$
 $0 \le \lambda \le 4$

 $\lambda = 3.5$

- Maps the interval [0, 1] into itself
- Iterate over and over again: represents state of a dynamical system evolving in time

Logistic map:
$$f(x) = \lambda x(1-x)$$
 $0 \le \lambda \le 4$

 $\lambda = 3.8$

- Maps the interval [0, 1] into itself
- Iterate over and over again: represents state of a dynamical system evolving in time

Logistic map:
$$f(x) = \lambda x(1-x)$$
 $0 \le \lambda \le 4$

 $\lambda = 4$

- Maps the interval [0, 1] into itself
- Iterate over and over again: represents state of a dynamical system evolving in time

More than just a pretty picture

Bifurcation diagram. Horizontal = parameter, vertical = recurrent states

More than just a pretty picture

$\lambda \in [3, 3.57 \dots] \leftarrow \text{period-doubling cascade}$

More than just a pretty picture

 $\lambda \in \texttt{[3.832, 3.857...]} \gets \mathsf{window} \text{ of stability}$

More than just a pretty picture

 $\lambda = \mathbf{4} \leftarrow \mathsf{chaos}$

Aside: Mandelbrot set

Aside: Mandelbrot set

General questions

Numerical picture of bifurcation diagram for logistic maps raises questions:

- Various phenomena are suggested by numerics: period-doubling cascades, windows of stability, self-similarity, chaos. Can their existence be proved rigorously?
- Qualitative behaviour depends on parameter. How large are the parameter sets on which different behaviours occur?
- Or Can consider other one-parameter families of interval maps f_λ: [0, 1] ○. Does the same story happen here?
- What about higher dimensions $(f_{\lambda} : \mathbb{R}^d \odot)$ or manifolds $(f_{\lambda} : M \odot)$?

 Rigorous phenomena for logistic maps. Period-doubling, windows of stability, self-similarity, chaos: All can be rigorously proved to exist.

Size of parameter sets (prevalence of different behaviours).

Other interval maps.

Higher dimensions.

- Rigorous phenomena for logistic maps. Period-doubling, windows of stability, self-similarity, chaos: All can be rigorously proved to exist.
- Size of parameter sets (prevalence of different behaviours).
 Windows of stability are open and dense. Chaos is a Cantor set but has positive measure.
- Other interval maps.

Higher dimensions.

 Rigorous phenomena for logistic maps. Period-doubling, windows of stability, self-similarity, chaos: All can be rigorously proved to exist.

Size of parameter sets (prevalence of different behaviours).
 Windows of stability are open and dense. Chaos is a Cantor set but has positive measure.

Other interval maps.

Same results can be proved for very general families of interval maps. Even some quantitative results are identical, such as rate of convergence in period-doubling cascades (Feigenbaum universality).

Higher dimensions.

 Rigorous phenomena for logistic maps. Period-doubling, windows of stability, self-similarity, chaos: All can be rigorously proved to exist.

Size of parameter sets (prevalence of different behaviours).
 Windows of stability are open and dense. Chaos is a Cantor set but has positive measure.

Other interval maps.

Same results can be proved for very general families of interval maps. Even some quantitative results are identical, such as rate of convergence in period-doubling cascades (Feigenbaum universality).

Higher dimensions.

Numerics suggest a similar story, but proofs are much harder and most answers are still unknown.