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A pretty picture
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The logistic map

Logistic map: f (x) = λx(1− x) 0 ≤ λ ≤ 4

x

f(x)

λ = 0.5

Maps the interval [0, 1]
into itself

Iterate over and over
again: represents state of
a dynamical system
evolving in time

What is the long-term behaviour, and (how) does it depend on λ?
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The logistic map

Logistic map: f (x) = λx(1− x) 0 ≤ λ ≤ 4

x

f(x)

λ = 2

Maps the interval [0, 1]
into itself

Iterate over and over
again: represents state of
a dynamical system
evolving in time

What is the long-term behaviour, and (how) does it depend on λ?

Vaughn Climenhaga (University of Houston) October 16, 2012 3 / 7



Logistic maps General systems

The logistic map

Logistic map: f (x) = λx(1− x) 0 ≤ λ ≤ 4

x

f(x)

λ = 2.5

Maps the interval [0, 1]
into itself

Iterate over and over
again: represents state of
a dynamical system
evolving in time

What is the long-term behaviour, and (how) does it depend on λ?

Vaughn Climenhaga (University of Houston) October 16, 2012 3 / 7



Logistic maps General systems

The logistic map

Logistic map: f (x) = λx(1− x) 0 ≤ λ ≤ 4

x

f(x)

λ = 2.8

Maps the interval [0, 1]
into itself

Iterate over and over
again: represents state of
a dynamical system
evolving in time

What is the long-term behaviour, and (how) does it depend on λ?
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The logistic map

Logistic map: f (x) = λx(1− x) 0 ≤ λ ≤ 4

x

f(x)

λ = 3

Maps the interval [0, 1]
into itself

Iterate over and over
again: represents state of
a dynamical system
evolving in time

What is the long-term behaviour, and (how) does it depend on λ?
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The logistic map

Logistic map: f (x) = λx(1− x) 0 ≤ λ ≤ 4

x

f(x)

λ = 3.2

Maps the interval [0, 1]
into itself

Iterate over and over
again: represents state of
a dynamical system
evolving in time

What is the long-term behaviour, and (how) does it depend on λ?
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More than just a pretty picture

Bifurcation diagram. Horizontal = parameter, vertical = recurrent states
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More than just a pretty picture

λ ∈ [3, 3.57 . . . ] ← period-doubling cascade
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More than just a pretty picture

λ ∈ [3.832, 3.857 . . . ] ← window of stability
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More than just a pretty picture

λ = 4 ← chaos
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Aside: Mandelbrot set

Fix c ∈ C: let z0 = 0, zn+1 = z2
n + c .

Mandelbrot set M = {c | zn 6→ ∞}
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General questions

Numerical picture of bifurcation diagram for logistic maps raises questions:

1 Various phenomena are suggested by numerics: period-doubling
cascades, windows of stability, self-similarity, chaos. Can their
existence be proved rigorously?

2 Qualitative behaviour depends on parameter. How large are the
parameter sets on which different behaviours occur?

3 Can consider other one-parameter families of interval maps
fλ : [0, 1] 	. Does the same story happen here?

4 What about higher dimensions (fλ : Rd 	) or manifolds (fλ : M 	)?
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General answers

1 Rigorous phenomena for logistic maps.
Period-doubling, windows of stability, self-similarity, chaos: All can
be rigorously proved to exist.

2 Size of parameter sets (prevalence of different behaviours).

Windows of stability are open and dense. Chaos is a Cantor set but
has positive measure.

3 Other interval maps.

Same results can be proved for very general families of interval maps.
Even some quantitative results are identical, such as rate of conver-
gence in period-doubling cascades (Feigenbaum universality).

4 Higher dimensions.

Numerics suggest a similar story, but proofs are much harder
and most answers are still unknown.
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