
Ergodic theory Thermodynamic formalism Equilibrium states

Thermodynamic formalism for dynamical systems

Vaughn Climenhaga

University of Houston

October 8, 2013

Vaughn Climenhaga (University of Houston) October 8, 2013 1 / 26



Ergodic theory Thermodynamic formalism Equilibrium states

The talk in one slide

Phenomenon Deterministic systems can exhibit stochastic behaviour

Mechanism Driven by expansion + recurrence in phase space

Idea
Treat as stochastic process; choose invariant measure.
Given by equilibrium state in thermodynamic formalism

Challenge Mechanisms driving stochasticity may not be uniform
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Predictions in dynamical systems

Key objects:

X = phase space for a dynamical system.
Points in X correspond to configurations of the system.

f : X 	 describes evolution of the state of the system over a single
time step. f n = f ◦ · · · ◦ f (n times)

Standing assumptions: X is a compact metric space, f is continuous
Often X a smooth manifold, f a diffeomorphism

Initial measurement gives neighbourhood U ⊂ X . To make a prediction
based on this measurement, we must describe f n(U).

Common phenomenon: diam f n(U) becomes large relatively quickly no
matter how small U is. Stronger phenomenon:

iterates f n(U) become dense in X ← mechanism for rigorous results
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Examples

Lorenz equations (1963) – atmospheric dynamics

ẋ = σ(y − x) σ = 10

ẏ = x(ρ− z)− y ρ = 28

ż = xy − βz β = 8/3

Hénon map (1976) – models stretching and folding

f (x , y) = (y + 1− ax2, bx) a = 1.4, b = .3

f(x)

x0 1

Lorenz and Hénon systems are non-uniformly hyperbolic.

Situation simplifies for (less realistic) uniformly hyperbolic
systems, exemplified by the

Doubling map f : S1 	, x 7→ 2x (mod 1)
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Invariant and ergodic measures

Given ϕ ∈ C (X ), view ϕ ◦ f n : X → R as sequence of random variables

Pick µ ∈M = {Borel probability measures on X}
(X , µ, ϕ ◦ f n) defines a stochastic process

Does this process satisfy any limit laws? It is not usually i.i.d.

µ ∈M is invariant if
∫
ϕ dµ =

∫
ϕ ◦ f dµ for all ϕ ∈ C (X )

Equivalent to the RVs (X , µ, ϕ ◦ f n) being identically distributed

Mf = {invariant measures} ⊂ M (convex, weak*-compact)

Me
f = {extreme points of Mf } = {ergodic measures}

Each µ ∈Mf is a convex combination of ergodic measures (uniquely)
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Limit laws

Theorem (G.D. Birkhoff, 1931)

If µ ∈Me
f then 1

n

∑n−1
k=0 ϕ ◦ f k(x)→

∫
ϕ dµ for µ-a.e. x

The stochastic process (X , µ, ϕ ◦ f n) obeys the law of large numbers.

Other limit laws? CLT? Large deviations? Iterated logarithm?

Identically distributed (by invariance) but generally not independent.

What ergodic measure should we use?

Natural measure for diffeos is ‘physical’: volume. Often not invariant.
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An abundance of measures

Me
f is often very large.

Example: X = Σ+
2 = {0, 1}N, f = σ : x0x1x2 . . . 7→ x1x2x3 . . . .

Periodic measures: f p(x) = x  µ = 1
p (δx + δfx + · · ·+ δf p−1x) ∈Me

f

Periodic orbits are dense. (f p(x) = x has 2p solutions)

α, β > 0, α + β = 1  (α, β)-Bernoulli measure:

w ∈ {0, 1}n  cylinder set [w ] = {x ∈ X | x1 · · · xn = w}
k = # of 0’s in w ⇒ µ([w ]) = αkβn−k

Also have Markov measures, Gibbs measures, etc.

How do we pick a good ergodic measure?

(and what statistical properties does it have?)
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Coding by symbolic systems

f(x)

x0 1

Doubling map f : S1 	, x 7→ 2x (mod 1)

Full shift Σ+
2 = {0, 1}N, f = σ : x0x1x2 . . . 7→ x1x2x3 . . .

General procedure for symbolic description of dynamics:

1 Partition X as a disjoint union A1 ∪ · · · ∪ Ad

2 f n(x) ∈ Ayn defines y = π(x) ∈ {1, . . . , d}N

3 π : X → {1, . . . , d}N is the coding map

4 Y = π(X ) is the coding space

X
f−→ X

π ↓ ↓ π
Y

σ−→ Y

If y1 . . . yn = y ′1 . . . y
′
n but yn+1 6= y ′n+1, then d(y , y ′) = 2−n

Coding space is closed and σ-invariant: σ(Y ) ⊂ Y .

Typically many “forbidden” sequences. When is Y “good”?
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Entropy for shift spaces

Topological entropy of a shift space X :

L = {words that appear in some x ∈ X} = language of X

htop (X ) = limn→∞
1
n log #Ln Ln = {words of length n} ⊂ L

Example

X = Σ+
2 ⇒ #Ln = 2n ⇒ htop (X ) = log 2

Measure-theoretic entropy for µ ∈Mf :

h(µ) := limn→∞
1
n

∑
w∈Ln H(µ[w ]) H(p) = −p log p

Example

Entropy of (α, β)-Bernoulli measure is h(µ) = −α logα− β log β.
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Variational principles

Variational principle: htop (X ) = sup{h(µ) | µ ∈Mf }
h(µ) = htop (X ) µ is a measure of maximal entropy (MME)

Generalises to topological pressure of a potential function ϕ ∈ C (X ):

Λn(ϕ) =
∑

w∈Ln eSnϕ(w) Snϕ(w) = supx∈[w ]

∑n−1
k=0 ϕ(σkx)

Topological pressure of ϕ is P(ϕ) = limn→∞
1
n log Λn(ϕ)

P(ϕ) = sup{h(µ) +
∫
ϕ dµ | µ ∈Mf }

A measure achieving the supremum is an equilibrium state

Example: X = Σ+
2 , ϕ(x) = sχ[0] + tχ[1]

P(ϕ) = log(es + et), unique eq. state is (es−P(ϕ), et−P(ϕ))-Bernoulli

Vaughn Climenhaga (University of Houston) October 8, 2013 10 / 26
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Unique equilibrium states

Unique equilibrium states often have strong statistical properties: central
limit theorem, decay of correlations, large deviations, etc.

the sequence of observations (X , µ, ϕ ◦ f n) has many properties in
common with i.i.d. sequence of random variables

Decay of correlations:

ϕ,ψ ∈ Cα +
∫
ϕ dµ = 0⇒ Cn(ϕ,ψ) =

∫
(ϕ ◦ f n)ψ dµ→ 0

Often: unique ⇒ exponential, non-unique ⇒ polynomial.

Central limit theorem:

ψ ∈ Cα +
∫
ψ dµ = 0⇒ ∃ξ ≥ 0 such that for all r ∈ R,

µ

{
x | 1√

n

n−1∑
k=0

ψ(f kx) < r

}
n→∞−→ 1

ξ
√

2π

∫ r

−∞
e−x

2/2ξ2 dx
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SRB measures

Key example: f a diffeo, TM = Eu ⊕ E s a Df -invariant splitting,

‖Df n(vu)‖ → ∞ and ‖Df n(v s)‖ → 0 exponentially in n.

Equilibrium states for − log | det(Df |Eu)| are ‘physical’ measures.

Not smooth on M, but smooth along unstable manifolds

Existence, exponential decay of correlations, CLT known in many cases

Uniformly hyperbolic systems: (Ya. Sinai, D. Ruelle, R. Bowen)

NUH systems: (Benedicks–Carleson–Young–Wang,
Alves–Bonatti–Viana, C.–Dolgopyat–Pesin)
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A (brief) digression: some applications

Hausdorff dimension: If f : M 	 is conformal and J is a uniformly
expanding repeller for f , then dimH J = t solves PJ(−t log ‖Df ‖) = 0
(R. Bowen 1979, D. Ruelle 1982). Also holds in more general settings
(Gatzouras–Peres 1997, Rugh 2008, C. 2011).

Multifractal analysis: Let Kϕ
α = {x | 1n

∑n−1
k=0 ϕ(f kx)→ α}. If

Tϕ : t 7→ P(tϕ) is differentiable, then the multifractal spectrum
α 7→ htop Kϕ

α is the Legendre transform of Tϕ.

Biology: pressure can be used to distinguish between coding and
non-coding DNA sequences (D. Koslicki, D. Thompson)
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Subshifts of finite type

Unique MME for full shift is (12 ,
1
2)-Bernoulli

Has exponential decay of correlations, CLT, large deviations

More general: X ⊂ {1, . . . , d}N is a subshift of finite type (SFT)

Set of walks on a directed graph with vertices labeled 1, . . . , d .

1 2 X = {words on {1, 2} such that 2 never follows 2}

Given by d × d transition matrix A

Aij = 1 if j can follow i , and 0 otherwise

λ = largest eigenvalue of A⇒ htop (X , f ) = log λ

Unique MME given in terms of left and right eigenvectors for λ
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Uniformly hyperbolic systems

Results generalise to equilibrium states for Hölder potentials ϕ

ϕ = 0: transition matrix A : Rd → Rd contracts positive cone

More generally: Perron–Frobenius operator Lϕ : Cα(X )→ Cα(X )

A diffeomorphism f : M → M is uniformly hyperbolic if there is a
Df -invariant splitting TxM = Eu(x)⊕ E s(x) and χ > 1 such that

‖Df (vu)‖ > χ‖vu‖
‖Df (v s)‖ < χ−1‖v s‖

Uniformly hyperbolic systems have Markov partitions

Can be coded using SFTs

Unique equilibrium states with strong statistical properties
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Non-uniform hyperbolicity

Many (most) natural “chaotic” systems
are not uniformly hyperbolic. . .

Hénon map

Eu(x) and E s(x) depend only measurably on x , and may become
arbitrarily close together

‖Df n(v s)‖ ≤ Cxχ
−n‖v s‖ and ‖Df n(vu)‖ ≥ C−1x χn‖vu‖, but Cx

depends only measurably on x , and may become arbitrarily large

Cannot be coded with SFTs. Need to consider broader classes of symbolic
systems in order to study non-uniform hyperbolicity.

One possibility: use a countable alphabet

Another option: finite alphabet, but more general language
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Multiple MMEs

Beyond SFTs, what classes of symbolic systems have unique MMEs?

Should be transitive (any two words can eventually be joined):
otherwise consider {1, 2}N ∪ {1, 2}N. Has htop = log 2 and two
MMEs: ν on {1, 2}N and µ on {1, 2}N, both (12 ,

1
2)-Bernoulli

Need more than transitivity: X ⊂ Σ5 = {0, 1, 2, 1, 2}N. Define the
language L by v0nw , w0nv ∈ L if and only if n ≥ |v |+ |w |.

Transitive and htop (X , σ) = log 2

Same two measures of maximal entropy as above
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Uniform transitivity

Full shift: words can be freely concatenated: v ,w ∈ L ⇒ vw ∈ L

Transitive ⇒ ∀v ,w ∈ L there exists u ∈ L such that vuw ∈ L
Length of u may vary depending on v ,w

Specification: ∃τ such that |u| ≤ τ for all v ,w

Transitive SFTs have specification

Theorem (R. Bowen, 1974)

Specification ⇒ unique equilibrium state µϕ for Hölder potential ϕ

Theorem (C., 2013)

µϕ has exponential decay of correlations and satisfies the CLT
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Ergodic theory Thermodynamic formalism Equilibrium states

Uniform transitivity

Full shift: words can be freely concatenated: v ,w ∈ L ⇒ vw ∈ L

Transitive ⇒ ∀v ,w ∈ L there exists u ∈ L such that vuw ∈ L
Length of u may vary depending on v ,w

Specification: ∃τ such that |u| ≤ τ for all v ,w

Transitive SFTs have specification

Theorem (R. Bowen, 1974)

Specification ⇒ unique equilibrium state µϕ for Hölder potential ϕ
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β-shifts

For β > 1, Σβ is the coding space for the map

fβ : [0, 1]→ [0, 1], x 7→ βx (mod 1)

1β = a1a2 · · · , where 1 =
∑∞

n=1 anβ
−n

fβ(x)

x0 1 2

x ∈ Σβ ⇔ x labels a walk starting at B ⇔ σnx � 1β for all n

(Here 1β =
2100201 . . . )
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Towers

Specification fails if 1β contains arbitrarily long strings of 0’s

Still get unique ES
for Lipschitz ϕ
(P. Walters 1978,
F. Hofbauer 1979)

Σβ given by a countable graph ⇒ use countable state analogue of SFTs

This leads to tower approach to non-uniform hyperbolicity

Idea: Find Z ⊂ X and a countable partition Z =
⊔

i Zi such that
f τi (Zi ) = Z for some inducing time τi

Z “big enough” + τi “small enough” ⇒ unique ES, stat. properties

Used for Hénon maps and billiard systems (Young 1998)
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Decompositions

When is it possible to build a tower? Or to get results via other means?

For symbolic systems, can use decompositions of the language L.

L = SGS ⇔ G,S ⊂ L are such that every w ∈ L can be written
as w = vpuv s for some u ∈ G and vp, v s ∈ S

Example

X = Σ+
2 = {0, 1}N G = {1w1 | w ∈ L} S = {0n | n ≥ 0}

The entropy of S is h(S) = limn→∞
1
n log #Sn

Key observation: If G has specification and h(S) < htop (X ), then many
ideas from Bowen’s proof can be adapted.

For the full shift, this is unnecessary, since L already has specification, but
the above decomposition is useful for other reasons.
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Non-uniform specification for Σβ

The only obstruction to specification is the tail of the sequence 1β.

Let G = {words whose path begins and ends at B}
G has specification

Let S = {words whose path never returns to B} (cusp excursions)

L = GS and h(S) = 0

Vaughn Climenhaga (University of Houston) October 8, 2013 22 / 26



Ergodic theory Thermodynamic formalism Equilibrium states

Obstructions to specification

G ⊂ L GM := {uvw | v ∈ G, |u|, |w | ≤ M} filtration L =
⋃

M GM

For the β-shift, GM corresponds to walks ending on one of the first M
vertices. Can return from these vertices to the base vertex in uniform time,
so each GM has specification.

“Every GM has specification” means we can glue words together, provided
we are allowed to remove an obstructing piece from the end of each word.
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Equilibrium states with non-uniform specification

Theorem (C.–Thompson, 2013)

Let X be a symbolic system with language L. Suppose L has a
decomposition SGS such that every GM has specification. If ϕ is Hölder
and P(S, ϕ) < P(X , ϕ), then ϕ has a unique equilibrium state µϕ.

P(S, ϕ) = limn→∞
1
n log Λn(Sn, ϕ)

Theorem (C., 2013)

Under the above conditions, there is a tower such that µϕ{x | τ(x) ≥ n}
decays exponentially in n. In particular, µϕ has exponential decay of
correlations and satisfies the CLT.
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Large deviations

Given µ and ϕ, let LDn(ε) = {x ∈ X | | 1n
∑n−1

k=0 ϕ(f kx)−
∫
ϕ dµ| > ε}

Birkhoff ergodic theorem ⇒ µ(LDn(ε))→ 0 as n→∞

Question: how quickly does µ(LDn(ε)) decay?

µ satisfies large deviations principle (LDP) with rate function q(ε) if
limn→∞

1
n log(LDn(ε)) = q(ε) < 0

Specification ⇒ µϕ has LDP (Young, 1990)

Non-uniform (SGS) specification ⇒ µϕ has LDP if L is edit
approachable by G (C.–Thompson–Yamamoto, 2013)

Edit approachable: w ∈ Ln can be turned into w̃ ∈ G by making o(n) edits

Vaughn Climenhaga (University of Houston) October 8, 2013 25 / 26



Ergodic theory Thermodynamic formalism Equilibrium states

Non-symbolic applications

All the results quoted using specification are in the symbolic setting.

This is a playground motivating results for smooth systems.

Uniqueness results have been extended to smooth systems assuming
non-uniform version of expansivity.

Currently being developed: Applications to partially hyperbolic systems,
geodesic flows on manifolds of non-positive curvature.

Vaughn Climenhaga (University of Houston) October 8, 2013 26 / 26


	Ergodic theory
	Thermodynamic formalism
	Equilibrium states

