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How big is it?

Meaning of “big” depends on what “it” is, and why we care.

How big is . . .

a crowd of people? number weight

a fish? length weight

a city? # of people diameter area

a house? # of bedrooms area volume

an assignment? # of problems time

a book? # of pages information

Facebook? # of users data

the internet? # of websites data useful data
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Various notions of “bigness”

Concrete, familiar meanings of “big” from the previous slide:

0. cardinality

1. length

2. area

3. volume

or “weighted” versions:

weight =

∫
density d(volume)

More abstract meanings: “amount of data”?

I We are used to thinking of kB, MB, GB, TB, etc.

I But a 500 GB hard drive where every bit is set to ‘0’ doesn’t
have much data on it. . .
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Cardinality:

I (a): Good way to measure how big a finite set is

I (b)–(d) have infinite cardinality
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(a) finite set (b) curve (c) surface (d) open region

0-dimensional 1-dimensional 2-dimensional 3-dimensional

Length:

I (a) has zero length. (Cover each point with tiny intervals)

I (b): Good way to measure how big a curve is

I (c)–(d) have infinite length: no curve of finite length can cover
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Moral: To say how “big” a thing is, need to know its dimension.



Subsets of R3

Focus on familiar meanings for now. Consider some subsets of R3.

(a) finite set (b) curve (c) surface (d) open region

0-dimensional 1-dimensional 2-dimensional 3-dimensional

Moral: To say how “big” a thing is, need to know its dimension.

I Dimension itself is a notion of bigness

I What is “dimension”? Seems to be which measure we use. . .



Example 1: A Cantor set

Consider the sets

C0 = [0, 1]

C1 = [0, 13 ] ∪ [23 , 1]

C2 = [0, 19 ] ∪ [29 ,
1
3 ] ∪ [23 ,

7
9 ] ∪ [89 , 1]

I Cn is disjoint union of 2n intervals of length 3−n

I Get Cn+1 from Cn by removing middle third of each interval

I The middle-third Cantor set is C =
⋂

n≥0 Cn.

Fact 1: C is infinite.

I In fact, C is uncountable. (Bijection between {0, 1}N and C )

Fact 2: C has zero length. (Length of Cn is 2n3−n → 0)

What is the dimension of C? Between 0 and 1.
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Example 2: The Koch curve

Consider the curves

K0 =

K1 =

K2 =

. . .

I Kn has 4n line segments of length 3−n

I Get Kn+1 from Kn by replacing each line segment with a
scaled-down copy of K0

I The Koch curve is K = limn→∞ Kn

Fact 1: K has infinite length. (Length of Kn is 4n3−n)

Fact 2: K has zero area. (Exercise – cover it with small rectangles)
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What is dimension?

Algebraic idea: # of parameters/coordinates. (Always an integer!)

More geometric idea: dimension is a scaling exponent.

Given λ > 0 and E ⊂ R3, let λE = {λx | x ∈ E}
I volume(λE ) = λ3 · volume(E )

I area(λE ) = λ2 · area(E )

I length(λE ) = λ1 · length(E )

I cardinality(λE ) = λ0 · cardinality(E )

“Correct” thing to do now is find for each α > 0 a measure

µα : {subsets of R3} → [0,∞] such that µα(λE ) = λαµ(E )

This is α-dimensional Hausdorff measure, but requires technicalities
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Self-similarity

Previous slide highlighted self-similarity of measures.

Think about self-similarity of sets. Scale a set E by a factor of 1
2 .

How many copies needed to recover original shape?

E = [0, 1] 2 = 21 copies

E = [0, 1]2 4 = 22 copies

E = [0, 1]3 8 = 23 copies

Moral: If E is a union of n copies of λE , then E is self-similar, and
the dimension of E is α, where n = λ−α.

Solve this to write dimE = α = log n
− log λ .
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Examples
Apply the formula dimE = log n

− log λ to some examples.

E λ n dimE

interval 1
2 2 log 2

log 2 = 1

square 1
2 4 log 4

log 2 = 2

cube 1
2 8 log 8

log 2 = 3

Cantor set 1
3 2 log 2

log 3 ∈ (0, 1)

Koch curve 1
3 4 log 4

log 3 ∈ (1, 2)

May consider other Cantor sets:

I scale by 1
5 , use 3 copies to build: dim = log 3

log 5

What about something like ?
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Dimension as a growth rate

Alternate way to derive dimension of our examples:

1. Given r > 0, break set into pieces of diameter ≤ r

2. N(r) = number of such pieces

Observe that N(r) ≈ r− dim


I interval: N(r) = r−1

I square: N(r) ≈ r−2

I cube: N(r) ≈ r−3

Conclusion: dim = limr→0
logN(r)
− log r (growth rate of N(r))

I Cantor set: N(3−n) = 2n, so logN(3−n)
− log(3−n) = log 2

log 3

I Koch curve: N(3−n) = 4n, so logN(3−n)
− log(3−n) = log 4

log 3
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More general examples

Coastline of Britain

I r = size of ruler

I rN(r) = measured length

N(r) ≈ r−1.25

Measured length ≈ r−.25 →∞

Can show that N(2−(k+2)) = Fk ,
the kth Fibonacci number

Use fact that Fk ≈
(
1+
√
5

2

)k
to deduce that dim = log(1+

√
5)

log 2 + 1
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Bernoulli processes

Consider the following two stochastic processes:

1. Flip a coin repeatedly, write down outcome (H or T)

2. Roll a die repeatedly, write down the number from 1 to 6

Which one is “bigger”? The second one, but why?

I “Bigness” = amount of information to record after each
iteration of the experiment

I Information measured in number of bits

I h bits can store 2h possible sequences

For n possible outcomes, need 2h = n, so h = log2 n.

I First process: h = log2 2 = 1

I Second process: h = log2 6 ∈ (2, 3)
h = entropy
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Unequal probabilities

What if I use a weighted coin? Say P(H) = 1
3 and P(T ) = 2

3 .

I More or less information? What’s the entropy?

Think of extreme case: P(H) = 1
1000 and P(T ) = 999

1000 .

I The event TTTTT doesn’t carry as much information now

I Most events carry less information

Definition: the information content of an event E is − log2 P(E )

I Entropy = expected information content of each experiment

Coin with weights 1
3 and 2

3 :

I H carries information log2(3), and T carries info log2(32)

Entropy = 1
3 log2(3) + 2

3 log2(32) = log2(3)− 2
3 < 1 (log is concave)
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I More or less information? What’s the entropy?

Think of extreme case: P(H) = 1
1000 and P(T ) = 999

1000 .

I The event TTTTT doesn’t carry as much information now

I Most events carry less information

Definition: the information content of an event E is − log2 P(E )

I Entropy = expected information content of each experiment

Coin with weights 1
3 and 2

3 :

I H carries information log2(3), and T carries info log2(32)

Entropy = 1
3 log2(3) + 2

3 log2(32) = log2(3)− 2
3 < 1 (log is concave)



Maximising entropy

Suppose I use a coin with weights p and q.
p, q ∈ [0, 1]
p + q = 1

I Information content of event H is − log2 p

I Information content of event T is − log2 q

entropy = expected information content

= P(H)(− log2 p) + P(T )(− log2 q)

= −p log2 p − q log2 q = p log2

(
1

p

)
+ q log2

(
1

q

)

Because log is concave down we always have entropy ≤ 1

Strictly concave ⇒ equality iff p = q = 1
2
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Relationship to dimension

Recall example of (12 ,
1
4)-Cantor set.

After n iterations, get a set Cn with 2n intervals

I Length varies: left a times, right b times ⇒ r = (12)a(14)b

I # with this length is ( n
a )

I If a = pn and b = qn, then ( n
a ) ≈ e(−p log p−q log q)n

Instead of covering all of C , just cover the part where #left
#right ≈

p
q .

I r =
(
(12)p(14)q

)n ⇒ − log r = n(p log 2 + q log 4)

I logN(r) ≥ n(−p log p − q log q)

dim ≈ logN(r)

− log r
≥ −p log p − q log q

p log 2 + q log 4
=

entropy

average expansion

Get actual dimension by maximising over (p, q).
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Information compression

Entropy measures information content

I Related: how much can data be compressed?

Shannon’s source coding theorem:

If we run n iterates of a process (IID)
with entropy h, the results can be stored
in nh bits of information, but no fewer.

Idea: First n results determine a subinterval of [0, 1]

I “Typical” interval has width ppnqqn = 2−nh

I Takes n bits to encode that much precision
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Information content
Entropy can be used to analyse genetic data.

I Genome: string of symbols A,C ,G ,T

I Some regions more important than others

Topological entropy and topological pressure

I Quantities related to entropy discussed above

I Can be adapted to study genetic data

I High entropy/pressure ⇒ high information content
⇒ more likely to be a coding region of the genome


