### The bigness of things

#### Vaughn Climenhaga

University of Houston



Image from Wikipedia



Image from Wikipedia

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Meaning of "big" depends on what "it" is, and why we care.

Meaning of "big" depends on what "it" is, and why we care.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

How big is . . .

a crowd of people?

Meaning of "big" depends on what "it" is, and why we care.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

How big is . . .

a crowd of people? number weight

Meaning of "big" depends on what "it" is, and why we care.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

How big is . . . a crowd of people? number weight a fish?

Meaning of "big" depends on what "it" is, and why we care.

How big is . . .

| a crowd of people? | number | weight |
|--------------------|--------|--------|
| a fish?            | length | weight |



Meaning of "big" depends on what "it" is, and why we care.

How big is ...

| a crowd of people? | number | weight |
|--------------------|--------|--------|
| a fish?            | length | weight |
| a city?            |        |        |



Meaning of "big" depends on what "it" is, and why we care.

How big is ...

| a crowd of people? | number      | weight   |      |
|--------------------|-------------|----------|------|
| a fish?            | length      | weight   |      |
| a city?            | # of people | diameter | area |

Meaning of "big" depends on what "it" is, and why we care.

How big is ...

| a crowd of people? | number      | weight   |      |
|--------------------|-------------|----------|------|
| a fish?            | length      | weight   |      |
| a city?            | # of people | diameter | area |
| a house?           |             |          |      |

Meaning of "big" depends on what "it" is, and why we care.

How big is ...

| a crowd of people? | number        | weight   |        |
|--------------------|---------------|----------|--------|
| a fish?            | length        | weight   |        |
| a city?            | # of people   | diameter | area   |
| a house?           | # of bedrooms | area     | volume |

Meaning of "big" depends on what "it" is, and why we care.

How big is ...

| a crowd of people? | number        | weight   |        |
|--------------------|---------------|----------|--------|
| a fish?            | length        | weight   |        |
| a city?            | # of people   | diameter | area   |
| a house?           | # of bedrooms | area     | volume |
| an assignment?     |               |          |        |

Meaning of "big" depends on what "it" is, and why we care.

How big is ...

| a crowd of people? | number        | weight   |        |
|--------------------|---------------|----------|--------|
| a fish?            | length        | weight   |        |
| a city?            | # of people   | diameter | area   |
| a house?           | # of bedrooms | area     | volume |
| an assignment?     | # of problems | time     |        |

Meaning of "big" depends on what "it" is, and why we care.

How big is ...

| a crowd of people? | number        | weight   |        |
|--------------------|---------------|----------|--------|
| a fish?            | length        | weight   |        |
| a city?            | # of people   | diameter | area   |
| a house?           | # of bedrooms | area     | volume |
| an assignment?     | # of problems | time     |        |
| a book?            |               |          |        |

Meaning of "big" depends on what "it" is, and why we care.

How big is ...

| a crowd of people? | number        | weight      |        |
|--------------------|---------------|-------------|--------|
| a fish?            | length        | weight      |        |
| a city?            | # of people   | diameter    | area   |
| a house?           | # of bedrooms | area        | volume |
| an assignment?     | # of problems | time        |        |
| a book?            | # of pages    | information |        |

Meaning of "big" depends on what "it" is, and why we care.

How big is ...

| a crowd of people? | number        | weight      |        |
|--------------------|---------------|-------------|--------|
| a fish?            | length        | weight      |        |
| a city?            | # of people   | diameter    | area   |
| a house?           | # of bedrooms | area        | volume |
| an assignment?     | # of problems | time        |        |
| a book?            | # of pages    | information |        |
| Facebook?          |               |             |        |

Meaning of "big" depends on what "it" is, and why we care.

How big is ...

| a crowd of people? | number        | weight      |        |
|--------------------|---------------|-------------|--------|
| a fish?            | length        | weight      |        |
| a city?            | # of people   | diameter    | area   |
| a house?           | # of bedrooms | area        | volume |
| an assignment?     | # of problems | time        |        |
| a book?            | # of pages    | information |        |
| Facebook?          | # of users    | data        |        |

Meaning of "big" depends on what "it" is, and why we care.

How big is ...

| a crowd of people? | number        | weight      |        |
|--------------------|---------------|-------------|--------|
| a fish?            | length        | weight      |        |
| a city?            | # of people   | diameter    | area   |
| a house?           | # of bedrooms | area        | volume |
| an assignment?     | # of problems | time        |        |
| a book?            | # of pages    | information |        |
| Facebook?          | # of users    | data        |        |
| the internet?      |               |             |        |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

the internet?

Meaning of "big" depends on what "it" is, and why we care.

How big is ...

| a crowd of people? | number        | weight      |             |
|--------------------|---------------|-------------|-------------|
| a fish?            | length        | weight      |             |
| a city?            | # of people   | diameter    | area        |
| a house?           | # of bedrooms | area        | volume      |
| an assignment?     | # of problems | time        |             |
| a book?            | # of pages    | information |             |
| Facebook?          | # of users    | data        |             |
| the internet?      | # of websites | data        | useful data |

### Various notions of "bigness"

Concrete, familiar meanings of "big" from the previous slide:

- $0. \ \ cardinality$
- 1. length
- 2. area
- 3. volume

#### Various notions of "bigness"

Concrete, familiar meanings of "big" from the previous slide:

- 0. cardinality
- 1. length
- 2. area
- 3. volume

or "weighted" versions: weight =  $\int density d(volume)$ 

#### Various notions of "bigness"

Concrete, familiar meanings of "big" from the previous slide:

- 0. cardinality
- 1. length
- 2. area
- 3. volume

or "weighted" versions:  
weight = 
$$\int density d(volume)$$

More abstract meanings: "amount of data"?

- We are used to thinking of kB, MB, GB, TB, etc.
- But a 500 GB hard drive where every bit is set to '0' doesn't have much data on it...

Focus on familiar meanings for now. Consider some subsets of  $\mathbb{R}^3$ .



Focus on familiar meanings for now. Consider some subsets of  $\mathbb{R}^3$ .



Cardinality:

- (a): Good way to measure how big a finite set is
- (b)–(d) have infinite cardinality

Focus on familiar meanings for now. Consider some subsets of  $\mathbb{R}^3$ .



Length:

- (a) has zero length. (Cover each point with tiny intervals)
- (b): Good way to measure how big a curve is
- (c)–(d) have infinite length: no curve of finite length can cover

Focus on familiar meanings for now. Consider some subsets of  $\mathbb{R}^3$ .



Area:

- ► (a)–(b) have zero area. (Cover with tiny discs)
- (c): Good way to measure how big a surface is
- (d) has infinite area

Focus on familiar meanings for now. Consider some subsets of  $\mathbb{R}^3$ .



Volume:

- (a)–(c) have zero volume
- ▶ (d): Good way to measure how big an open region is

Focus on familiar meanings for now. Consider some subsets of  $\mathbb{R}^3$ .



Focus on familiar meanings for now. Consider some subsets of  $\mathbb{R}^3$ .



Moral: To say how "big" a thing is, need to know its dimension.

- Dimension itself is a notion of bigness
- ▶ What is "dimension"? Seems to be which measure we use...

Consider the sets

$$\begin{split} C_0 &= [0, 1] \\ C_1 &= [0, \frac{1}{3}] \cup [\frac{2}{3}, 1] \\ C_2 &= [0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{1}{3}] \cup [\frac{2}{3}, \frac{7}{9}] \cup [\frac{8}{9}, 1] \end{split}$$

► C<sub>n</sub> is disjoint union of 2<sup>n</sup> intervals of length 3<sup>-n</sup>

• Get  $C_{n+1}$  from  $C_n$  by removing middle third of each interval

Consider the sets

$$\begin{split} C_0 &= [0,1] \\ C_1 &= [0,\frac{1}{3}] \cup [\frac{2}{3},1] \\ C_2 &= [0,\frac{1}{9}] \cup [\frac{2}{9},\frac{1}{3}] \cup [\frac{2}{3},\frac{7}{9}] \cup [\frac{8}{9},1] \end{split}$$

•  $C_n$  is disjoint union of  $2^n$  intervals of length  $3^{-n}$ 

• Get  $C_{n+1}$  from  $C_n$  by removing middle third of each interval

• The middle-third Cantor set is  $C = \bigcap_{n \ge 0} C_n$ .

Fact 1: C is infinite.

Consider the sets

$$\begin{split} C_0 &= [0,1] \\ C_1 &= [0,\frac{1}{3}] \cup [\frac{2}{3},1] \\ C_2 &= [0,\frac{1}{9}] \cup [\frac{2}{9},\frac{1}{3}] \cup [\frac{2}{3},\frac{7}{9}] \cup [\frac{8}{9},1] \end{split}$$

•  $C_n$  is disjoint union of  $2^n$  intervals of length  $3^{-n}$ 

- Get  $C_{n+1}$  from  $C_n$  by removing middle third of each interval
- The middle-third Cantor set is  $C = \bigcap_{n \ge 0} C_n$ .

Fact 1: C is infinite.

▶ In fact, *C* is uncountable. (Bijection between {0,1}<sup>ℕ</sup> and *C*)

Consider the sets

$$\begin{split} C_0 &= [0,1] \\ C_1 &= [0,\frac{1}{3}] \cup [\frac{2}{3},1] \\ C_2 &= [0,\frac{1}{9}] \cup [\frac{2}{9},\frac{1}{3}] \cup [\frac{2}{3},\frac{7}{9}] \cup [\frac{8}{9},1] \end{split}$$

•  $C_n$  is disjoint union of  $2^n$  intervals of length  $3^{-n}$ 

- Get  $C_{n+1}$  from  $C_n$  by removing middle third of each interval
- The middle-third Cantor set is  $C = \bigcap_{n \ge 0} C_n$ .

Fact 1: C is infinite.

▶ In fact, *C* is uncountable. (Bijection between {0,1}<sup>ℕ</sup> and *C*)

**Fact 2:** *C* has zero length. (Length of  $C_n$  is  $2^n 3^{-n} \rightarrow 0$ )

Consider the sets

$$\begin{split} C_0 &= [0,1] \\ C_1 &= [0,\frac{1}{3}] \cup [\frac{2}{3},1] \\ C_2 &= [0,\frac{1}{9}] \cup [\frac{2}{9},\frac{1}{3}] \cup [\frac{2}{3},\frac{7}{9}] \cup [\frac{8}{9},1] \end{split}$$

•  $C_n$  is disjoint union of  $2^n$  intervals of length  $3^{-n}$ 

- Get  $C_{n+1}$  from  $C_n$  by removing middle third of each interval
- The middle-third Cantor set is  $C = \bigcap_{n \ge 0} C_n$ .

Fact 1: C is infinite.

▶ In fact, *C* is uncountable. (Bijection between {0,1}<sup>ℕ</sup> and *C*)

**Fact 2:** *C* has zero length. (Length of  $C_n$  is  $2^n 3^{-n} \rightarrow 0$ )

What is the dimension of C? Between 0 and 1.

### Example 2: The Koch curve

Consider the curves





・ロト ・ 雪 ト ・ ヨ ト

-

- $K_n$  has  $4^n$  line segments of length  $3^{-n}$
- ▶ Get K<sub>n+1</sub> from K<sub>n</sub> by replacing each line segment with a scaled-down copy of K<sub>0</sub>

### Example 2: The Koch curve

Consider the curves





イロト 不得 トイヨト イヨト

-

- $K_n$  has  $4^n$  line segments of length  $3^{-n}$
- ▶ Get K<sub>n+1</sub> from K<sub>n</sub> by replacing each line segment with a scaled-down copy of K<sub>0</sub>
- The Koch curve is  $K = \lim_{n \to \infty} K_n$

Fact 1: K has infinite length. (Length of  $K_n$  is  $4^n 3^{-n}$ )

### Example 2: The Koch curve

Consider the curves





- $K_n$  has  $4^n$  line segments of length  $3^{-n}$
- ▶ Get K<sub>n+1</sub> from K<sub>n</sub> by replacing each line segment with a scaled-down copy of K<sub>0</sub>
- The Koch curve is  $K = \lim_{n \to \infty} K_n$

Fact 1: K has infinite length. (Length of  $K_n$  is  $4^n 3^{-n}$ )

Fact 2: K has zero area. (Exercise – cover it with small rectangles)

### What is dimension?

Algebraic idea: # of parameters/coordinates. (Always an integer!)

## What is dimension?

Algebraic idea: # of parameters/coordinates. (Always an integer!)

More geometric idea: dimension is a scaling exponent.

Given  $\lambda > 0$  and  $E \subset \mathbb{R}^3$ , let  $\lambda E = \{\lambda \mathbf{x} \mid \mathbf{x} \in E\}$ 

- volume $(\lambda E) = \lambda^3 \cdot \text{volume}(E)$
- $\operatorname{area}(\lambda E) = \lambda^2 \cdot \operatorname{area}(E)$
- $\operatorname{length}(\lambda E) = \lambda^1 \cdot \operatorname{length}(E)$
- cardinality $(\lambda E) = \lambda^0 \cdot \text{cardinality}(E)$



## What is dimension?

Algebraic idea: # of parameters/coordinates. (Always an integer!)

More geometric idea: dimension is a scaling exponent.

Given  $\lambda > 0$  and  $E \subset \mathbb{R}^3$ , let  $\lambda E = \{\lambda \mathbf{x} \mid \mathbf{x} \in E\}$ 

- volume $(\lambda E) = \lambda^3 \cdot \text{volume}(E)$
- $\operatorname{area}(\lambda E) = \lambda^2 \cdot \operatorname{area}(E)$
- $\operatorname{length}(\lambda E) = \lambda^1 \cdot \operatorname{length}(E)$
- cardinality( $\lambda E$ ) =  $\lambda^0 \cdot \text{cardinality}(E)$

"Correct" thing to do now is find for each  $\alpha > 0$  a measure

 $\mu_{\alpha}$ : {subsets of  $\mathbb{R}^{3}$ }  $\rightarrow [0, \infty]$  such that  $\mu_{\alpha}(\lambda E) = \lambda^{\alpha} \mu(E)$ 

This is  $\alpha$ -dimensional Hausdorff measure, but requires technicalities



Previous slide highlighted self-similarity of measures.

Think about self-similarity of sets. Scale a set *E* by a factor of  $\frac{1}{2}$ . How many copies needed to recover original shape?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Previous slide highlighted self-similarity of measures.

Think about self-similarity of sets. Scale a set *E* by a factor of  $\frac{1}{2}$ . How many copies needed to recover original shape?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

E = [0, 1] \_\_\_\_\_  $2 = 2^1$  copies

Previous slide highlighted self-similarity of measures.

Think about self-similarity of sets. Scale a set *E* by a factor of  $\frac{1}{2}$ . How many copies needed to recover original shape?



Previous slide highlighted self-similarity of measures.

Think about self-similarity of sets. Scale a set *E* by a factor of  $\frac{1}{2}$ . How many copies needed to recover original shape?



Moral: If *E* is a union of *n* copies of  $\lambda E$ , then *E* is self-similar, and the dimension of *E* is  $\alpha$ , where  $n = \lambda^{-\alpha}$ .

Previous slide highlighted self-similarity of measures.

Think about self-similarity of sets. Scale a set *E* by a factor of  $\frac{1}{2}$ . How many copies needed to recover original shape?



Moral: If *E* is a union of *n* copies of  $\lambda E$ , then *E* is self-similar, and the dimension of *E* is  $\alpha$ , where  $n = \lambda^{-\alpha}$ .

Solve this to write dim  $E = \alpha = \frac{\log n}{-\log \lambda}$ .

#### Examples

Apply the formula dim  $E = \frac{\log n}{-\log \lambda}$  to some examples.

| E          | $\lambda$     | n | dim E                            |
|------------|---------------|---|----------------------------------|
| interval   | $\frac{1}{2}$ | 2 | $\frac{\log 2}{\log 2} = 1$      |
| square     | $\frac{1}{2}$ | 4 | $\frac{\log 4}{\log 2} = 2$      |
| cube       | $\frac{1}{2}$ | 8 | $\frac{\log 8}{\log 2} = 3$      |
| Cantor set | $\frac{1}{3}$ | 2 | $rac{\log 2}{\log 3} \in (0,1)$ |
| Koch curve | $\frac{1}{3}$ | 4 | $rac{\log 4}{\log 3} \in (1,2)$ |

・ロト・日本・モト・モート ヨー うへで

#### Examples

Apply the formula dim  $E = \frac{\log n}{-\log \lambda}$  to some examples.

| E          | $\lambda$     | n | dim <i>E</i>                     |
|------------|---------------|---|----------------------------------|
| interval   | $\frac{1}{2}$ | 2 | $\frac{\log 2}{\log 2} = 1$      |
| square     | $\frac{1}{2}$ | 4 | $\frac{\log 4}{\log 2} = 2$      |
| cube       | $\frac{1}{2}$ | 8 | $\frac{\log 8}{\log 2} = 3$      |
| Cantor set | $\frac{1}{3}$ | 2 | $rac{\log 2}{\log 3} \in (0,1)$ |
| Koch curve | $\frac{1}{3}$ | 4 | $rac{\log 4}{\log 3} \in (1,2)$ |

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

May consider other Cantor sets: —

▶ scale by  $\frac{1}{5}$ , use 3 copies to build: dim =  $\frac{\log 3}{\log 5}$ 

#### Examples

Apply the formula dim  $E = \frac{\log n}{-\log \lambda}$  to some examples.

| E          | $\lambda$     | n | dim <i>E</i>                     |  |
|------------|---------------|---|----------------------------------|--|
| interval   | $\frac{1}{2}$ | 2 | $\frac{\log 2}{\log 2} = 1$      |  |
| square     | $\frac{1}{2}$ | 4 | $\frac{\log 4}{\log 2} = 2$      |  |
| cube       | $\frac{1}{2}$ | 8 | $\frac{\log 8}{\log 2} = 3$      |  |
| Cantor set | $\frac{1}{3}$ | 2 | $rac{\log 2}{\log 3} \in (0,1)$ |  |
| Koch curve | $\frac{1}{3}$ | 4 | $rac{\log 4}{\log 3} \in (1,2)$ |  |

May consider other Cantor sets: ----

▶ scale by  $\frac{1}{5}$ , use 3 copies to build: dim =  $\frac{\log 3}{\log 5}$ 

What about something like  $\frac{\frac{1}{2}}{1}$ 

#### Dimension as a growth rate

Alternate way to derive dimension of our examples:

- 1. Given r > 0, break set into pieces of diameter < r
- 2. N(r) = number of such pieces

Observe that  $N(r) \approx r^{-\dim}$   $\begin{cases} \qquad \triangleright \text{ interval: } N(r) = r^{-1} \\ \triangleright \text{ square: } N(r) \approx r^{-2} \end{cases}$ 

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• cube: 
$$N(r) pprox r^{-3}$$

#### Dimension as a growth rate

Alternate way to derive dimension of our examples:

- 1. Given r > 0, break set into pieces of diameter  $\leq r$
- 2. N(r) = number of such pieces

**Conclusion:** dim =  $\lim_{r\to 0} \frac{\log N(r)}{-\log r}$ 

(growth rate of N(r))

#### More general examples

Coastline of Britain

- ► r = size of ruler
- rN(r) = measured length

 $N(r) \approx r^{-1.25}$ 

Measured length  $\approx r^{-.25} \rightarrow \infty$ 



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### More general examples

Coastline of Britain

- r = size of ruler
- rN(r) = measured length

 $N(r) pprox r^{-1.25}$ 

Measured length  $pprox r^{-.25} 
ightarrow \infty$ 





Can show that  $N(2^{-(k+2)}) = F_k$ , the *k*th Fibonacci number

Use fact that 
$$F_k \approx \left(\frac{1+\sqrt{5}}{2}\right)^k$$
 to deduce that dim  $= \frac{\log(1+\sqrt{5})}{\log 2} + 1$ 

くして 「「」 (山下) (山下) (山下) (山下)

### Bernoulli processes

Consider the following two stochastic processes:

- 1. Flip a coin repeatedly, write down outcome (H or T)
- 2. Roll a die repeatedly, write down the number from 1 to 6

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Which one is "bigger"? The second one, but why?

### Bernoulli processes

Consider the following two stochastic processes:

- 1. Flip a coin repeatedly, write down outcome (H or T)
- 2. Roll a die repeatedly, write down the number from 1 to 6

Which one is "bigger"? The second one, but why?

"Bigness" = amount of information to record after each iteration of the experiment

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Information measured in number of bits
- h bits can store  $2^h$  possible sequences

#### Bernoulli processes

Consider the following two stochastic processes:

- 1. Flip a coin repeatedly, write down outcome (H or T)
- 2. Roll a die repeatedly, write down the number from 1 to 6

Which one is "bigger"? The second one, but why?

"Bigness" = amount of information to record after each iteration of the experiment

h = entropy

- Information measured in number of bits
- h bits can store  $2^h$  possible sequences

For *n* possible outcomes, need  $2^h = n$ , so  $h = \log_2 n$ .

- First process:  $h = \log_2 2 = 1$
- Second process:  $h = \log_2 6 \in (2,3)$

What if I use a weighted coin? Say  $\mathbb{P}(H) = \frac{1}{3}$  and  $\mathbb{P}(T) = \frac{2}{3}$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

More or less information? What's the entropy?

What if I use a weighted coin? Say  $\mathbb{P}(H) = \frac{1}{3}$  and  $\mathbb{P}(T) = \frac{2}{3}$ .

More or less information? What's the entropy?

Think of extreme case:  $\mathbb{P}(H) = \frac{1}{1000}$  and  $\mathbb{P}(T) = \frac{999}{1000}$ .

The event TTTTT doesn't carry as much information now

Most events carry less information

What if I use a weighted coin? Say  $\mathbb{P}(H) = \frac{1}{3}$  and  $\mathbb{P}(T) = \frac{2}{3}$ .

More or less information? What's the entropy?

Think of extreme case:  $\mathbb{P}(H) = \frac{1}{1000}$  and  $\mathbb{P}(T) = \frac{999}{1000}$ .

- The event TTTTT doesn't carry as much information now
- Most events carry less information

**Definition:** the information content of an event E is  $-\log_2 \mathbb{P}(E)$ 

Entropy = expected information content of each experiment

What if I use a weighted coin? Say  $\mathbb{P}(H) = \frac{1}{3}$  and  $\mathbb{P}(T) = \frac{2}{3}$ .

More or less information? What's the entropy?

Think of extreme case:  $\mathbb{P}(H) = \frac{1}{1000}$  and  $\mathbb{P}(T) = \frac{999}{1000}$ .

- The event TTTTT doesn't carry as much information now
- Most events carry less information

**Definition:** the information content of an event E is  $-\log_2 \mathbb{P}(E)$ 

Entropy = expected information content of each experiment

Coin with weights  $\frac{1}{3}$  and  $\frac{2}{3}$ :

• *H* carries information  $\log_2(3)$ , and *T* carries info  $\log_2(\frac{3}{2})$ 

$$\mathsf{Entropy} = \tfrac{1}{3}\log_2(3) + \tfrac{2}{3}\log_2(\tfrac{3}{2}) = \log_2(3) - \tfrac{2}{3} < 1 \text{ (log is concave)}$$

### Maximising entropy

Suppose I use a coin with weights p and q.

- Information content of event H is  $-\log_2 p$
- ► Information content of event T is − log<sub>2</sub> q

$$egin{aligned} p,q\in [0,1]\ p+q=1 \end{aligned}$$

### Maximising entropy

Suppose I use a coin with weights p and q.

- Information content of event H is  $-\log_2 p$
- Information content of event T is  $-\log_2 q$

 $egin{aligned} p,q\in [0,1]\ p+q=1 \end{aligned}$ 

entropy = expected information content =  $\mathbb{P}(H)(-\log_2 p) + \mathbb{P}(T)(-\log_2 q)$ =  $-p \log_2 p - q \log_2 q = p \log_2 \left(\frac{1}{p}\right) + q \log_2 \left(\frac{1}{q}\right)$ 

#### Maximising entropy

Suppose I use a coin with weights p and q.

- Information content of event H is  $-\log_2 p$
- Information content of event T is  $-\log_2 q$

$$egin{aligned} p,q\in [0,1]\ p+q=1 \end{aligned}$$

entropy = expected information content =  $\mathbb{P}(H)(-\log_2 p) + \mathbb{P}(T)(-\log_2 q)$ =  $-p \log_2 p - q \log_2 q = p \log_2 \left(\frac{1}{p}\right) + q \log_2 \left(\frac{1}{q}\right)$ 

Because log is concave down we always have entropy  $\leq 1$ 

Strictly concave  $\Rightarrow$  equality iff  $p = q = \frac{1}{2}$ 

Recall example of 
$$(\frac{1}{2}, \frac{1}{4})$$
-Cantor set.  $\frac{\frac{1}{2}}{\frac{1}{4}}$   $\frac{\frac{1}{4}}{\frac{1}{8}}$ 

After *n* iterations, get a set  $C_n$  with  $2^n$  intervals

• Length varies: left *a* times, right *b* times  $\Rightarrow r = (\frac{1}{2})^a (\frac{1}{4})^b$ 

- # with this length is  $\binom{n}{a}$
- If a = pn and b = qn, then  $\binom{n}{a} \approx e^{(-p \log p q \log q)n}$

Recall example of 
$$(\frac{1}{2}, \frac{1}{4})$$
-Cantor set.  $\frac{\frac{1}{2}}{\frac{1}{4}}$   $\frac{\frac{1}{4}}{\frac{1}{8}}$ 

After *n* iterations, get a set  $C_n$  with  $2^n$  intervals

- Length varies: left *a* times, right *b* times  $\Rightarrow r = (\frac{1}{2})^a (\frac{1}{4})^b$
- # with this length is  $\binom{n}{a}$
- If a = pn and b = qn, then  $\binom{n}{a} \approx e^{(-p \log p q \log q)n}$

Instead of covering all of *C*, just cover the part where  $\frac{\#\text{left}}{\#\text{right}} \approx \frac{p}{q}$ .

$$r = \left( \left(\frac{1}{2}\right)^p \left(\frac{1}{4}\right)^q \right)^n \Rightarrow -\log r = n(p\log 2 + q\log 4)$$

Recall example of 
$$(\frac{1}{2}, \frac{1}{4})$$
-Cantor set.  $\frac{\frac{1}{2}}{\frac{1}{4}}$   $\frac{\frac{1}{4}}{\frac{1}{8}}$ 

After *n* iterations, get a set  $C_n$  with  $2^n$  intervals

- Length varies: left *a* times, right *b* times  $\Rightarrow r = (\frac{1}{2})^a (\frac{1}{4})^b$
- # with this length is  $\binom{n}{a}$
- If a = pn and b = qn, then  $\binom{n}{a} \approx e^{(-p \log p q \log q)n}$

Instead of covering all of *C*, just cover the part where  $\frac{\#\text{left}}{\#\text{right}} \approx \frac{p}{a}$ .

$$r = \left( \left(\frac{1}{2}\right)^p \left(\frac{1}{4}\right)^q \right)^n \Rightarrow -\log r = n(p\log 2 + q\log 4)$$

► 
$$\log N(r) \ge n(-p \log p - q \log q)$$

Recall example of 
$$(\frac{1}{2}, \frac{1}{4})$$
-Cantor set.  $\frac{\frac{1}{2}}{\frac{1}{4}}$   $\frac{\frac{1}{4}}{\frac{1}{8}}$ 

After *n* iterations, get a set  $C_n$  with  $2^n$  intervals

• Length varies: left *a* times, right *b* times  $\Rightarrow r = (\frac{1}{2})^a (\frac{1}{4})^b$ 

• If 
$$a = pn$$
 and  $b = qn$ , then  $\binom{n}{a} \approx e^{(-p \log p - q \log q)n}$ 

Instead of covering all of C, just cover the part where  $\frac{\#\text{left}}{\#\text{right}} \approx \frac{p}{q}$ .

$$r = \left( \left(\frac{1}{2}\right)^p \left(\frac{1}{4}\right)^q \right)^n \Rightarrow -\log r = n(p\log 2 + q\log 4)$$

► 
$$\log N(r) \ge n(-p \log p - q \log q)$$

$$\dim \approx \frac{\log N(r)}{-\log r} \ge \frac{-p \log p - q \log q}{p \log 2 + q \log 4} = \frac{\text{entropy}}{\text{average expansion}}$$

Recall example of 
$$(\frac{1}{2}, \frac{1}{4})$$
-Cantor set.  $\frac{\frac{1}{2}}{\frac{1}{4}}$   $\frac{\frac{1}{4}}{\frac{1}{8}}$ 

After *n* iterations, get a set  $C_n$  with  $2^n$  intervals

• Length varies: left *a* times, right *b* times  $\Rightarrow r = (\frac{1}{2})^a (\frac{1}{4})^b$ 

• If 
$$a = pn$$
 and  $b = qn$ , then  $\binom{n}{a} \approx e^{(-p \log p - q \log q)n}$ 

Instead of covering all of C, just cover the part where  $\frac{\#\text{left}}{\#\text{right}} \approx \frac{p}{q}$ .

$$r = \left( \left(\frac{1}{2}\right)^p \left(\frac{1}{4}\right)^q \right)^n \Rightarrow -\log r = n(p\log 2 + q\log 4)$$

► 
$$\log N(r) \ge n(-p \log p - q \log q)$$

$$\dim \approx \frac{\log N(r)}{-\log r} \ge \frac{-p \log p - q \log q}{p \log 2 + q \log 4} = \frac{\text{entropy}}{\text{average expansion}}$$

Get actual dimension by maximising over (p, q).

#### Information compression

Entropy measures information content

Related: how much can data be compressed?

・ロト・日本・モト・モート ヨー うへで

#### Information compression

Entropy measures information content

Related: how much can data be compressed?

#### Shannon's source coding theorem:

If we run n iterates of a process (IID) with entropy h, the results can be stored in nh bits of information, but no fewer.

Idea: First *n* results determine a subinterval of [0, 1]

- "Typical" interval has width  $p^{pn}q^{qn} = 2^{-nh}$
- Takes n bits to encode that much precision



#### Information content

Entropy can be used to analyse genetic data.

- ► Genome: string of symbols A, C, G, T
- Some regions more important than others



Topological entropy and topological pressure

- Quantities related to entropy discussed above
- Can be adapted to study genetic data
- ► High entropy/pressure ⇒ high information content ⇒ more likely to be a coding region of the genome