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Margulis measure for Anosov flows

Continuous flow on compact metric space: htop(F ) = supµ hµ(F ).
Can we describe the measure(s) of maximal entropy?

X a compact manifold, F = {ft}t∈R Anosov

TxX = Eu
x ⊕ E 0

x ⊕ E s
x integrates to W u,W 0,W s

Theorem (Margulis 1970)

There exist “conformal” measures ms,u
x on leaves W s,u

x s.t.

(ft)∗m
s
x = ehms

ftx
and (ft)∗m

u
x = e−hmu

ftx
where h = htop(F )

Product measure m = mu
x × Leb×ms

x is invariant and hm(F ) = h.

With Per(T ) = {periodic orbits : length≤ T}, the probability
measures equidistributed on Per(T ) converge to m as T →∞
m is mixing if F is topologically mixing, and in this case
# Per(T ) ∼ ehT

hT (ie., # Per(T ) · hTe−hT → 1 as T →∞)
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Uniqueness and the Gibbs property

m satisfies the following Gibbs property for all (x ,T ) ∈ X × R+:

C−1
ε e−hT ≤ m({y : d(fty , ftx) < ε for all t ∈ [0,T ]}︸ ︷︷ ︸

Bowen ball BT (x ,ε)

) ≤ Cεe
−hT

Theorem (Bowen 1972, 1973)

Given a transitive Axiom A flow, let µT be the probability measure
equidistributed on Per(T ). Then using the specification property

1 the limit m := limT→∞ µT exists;

2 m has the Gibbs property;

3 m is the unique measure of maximal entropy.

Obtain four ways to characterize the Bowen-Margulis measure m:

• unique MME • unique Gibbs measure
• limit of periodic orbits • conformal leaf measures
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Geodesic flow and curvature

M a closed Riemannian manifold, ft : T 1M → T 1M geodesic flow

v ∈ T 1M  cv geodesic with ċv (0) = v  ft(v) := ċv (t)

Hyperbolicity associated to curvature: K < 0 ⇒ Anosov

K > 0 K = 0 K < 0
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Hierarchy of hyperbolicity conditions for geodesic flows

K < 0 K ≤ 0

no
conjugate

points

no focal points

all inclusions proper

No focal points (NFP): balls in universal cover M̃ are convex

No conjugate points (NCP): p 6= q ∈ M̃ determine unique geodesic
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Overview of results, and of the talk

Describe leaf measures and specification in old and new settings

Negative curvature (Section 2 of talk)

Anosov flow, both approaches well-known, including
equilibrium states for all Hölder potentials

Nonpositive curvature (Section 3 of talk)

Leaf measure approach: Knieper (1998), only MME

Specification approach: Burns–C.–Fisher–Thompson (2018)

No focal points

Both approaches, with restrictions on ϕ and/or dimension

No conjugate points (Section 4 of talk)

Both approaches done, but only for MME in dimension 2:
C.–Knieper–War (2019)
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Uniform hyperbolicity and horospheres

M compact, connected, negative curvature ⇒ geodesic flow
ft : T 1M → T 1M is topologically mixing and Anosov

1. Go to universal cover M̃ 2. Get E s,u, W s,u from horospheres

F

Fc−1

Fd−1

Fc

Fd

Fa−1

Fb−1

Fa

Fb

a1

b1

a2

b2

c1

d1

c2

d2

v

Hs
v

Hu
v

∂M̃

η

Identify W s,u
v with Hs,u

v and hence with ideal boundary ∂M̃

project Hs
v → ∂M̃ from η = cv (∞), and Hu

v from cv (−∞)
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Constructing conformal measures: a rough idea

MME/Gibbs: “every orbit segment of length t gets weight e−ht .”

Of course this is nonsense: uncountable! Options to resolve:

1 Use periodic orbits or (t, ε)-separated sets (Bowen)

2 Use isometric action of Γ = π1(M) on M̃ (Patterson–Sullivan)
Geodesic segment corresponds to pair of points in M̃

Now with a countable set, can sum:

1
∑

c periodic orbit e
−h·length(c) Lebc

2
∑

γ∈Γ e
−hd(x ,γx)δγx for x ∈ M̃

But these are infinite! Two options:

1 Finite part of sum, normalize, limit

2 Replace h with s > h, normalize,
take s ↘ h

x
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Patterson–Sullivan construction and Margulis measure

Fix reference point x ∈ M̃. For each p ∈ M̃ get conformal density

νp = lim
s↘h

[
normalize

(∑
γ∈Γ

e−sd(p,γx)δγx

)]
(supp νp = ∂M̃)

Can construct a Γ-invariant probability measure
µ̄ on (∂M̃)2 (a geodesic current) by

d µ̄(ξ, η) = ehβp(ξ,η) dνp(ξ) dνp(η)

Using
(
(∂M̃)2\diag

)
× R ↔ T 1M̃, get flow-

and Γ-invariant measure on T 1M̃ via µ̄× Leb.

ξ

η

p

βp(ξ, η)

Descend to finite inv. measure on T 1M; normalize to MME µ.

Scaling properties of νp w.r.t. p lead to Margulis relations



Introduction Negative curvature Nonpositive curvature No conjugate points

More about leaf measures

Patterson–Sullivan construction extends to ϕ 6= 0, noncompact M,
see Paulin, Pollicott, Schapira (2015)

Coding by suspension of Markov shift (Ratner, Bowen, Walters,
Ruelle, Series) gives leaf measures via eigendata of Ruelle transfer
operator, see Haydn (1994)

Hamenstädt (1989): Margulis leaf measure is Hausdorff measure
for an appropriate leaf metric. For ϕ 6= 0 make a time change
(1997); requires continuous time.

Alternate version: Bowen’s definition of htop for noncompact sets
(1973) mirrors Hausdorff dimension and gives an outer measure.
Restricted to W u

x this is Margulis leaf measure; see C., Pesin,
Zelerowicz (2019) for discrete-time case. Using Pesin–Pitskel’
version of pressure (1984), get a corresponding result for ϕ 6= 0.
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Specification property

Consider a continuous flow ft on a compact metric space X

Identify (x , t) ∈ X × R+ with orbit segment {fsx : s ∈ [0, t]}

Transitive Anosov⇒ specification property:

∀ shadowing scale ε > 0 ∃ gap size τ > 0 s.t.

∀ list of orbit seg. {(xi , ti )}Ni=1 ⊂ X × R+

∃ ε-shadowing τ -connecting orbit:
y ∈ X , Tj ∈ R s.t. fTj

(y) ∈ Btj (xj , ε)
and Tj+1 − (Tj + tj) ∈ [0, τ ] (see below)

. . .

. . .

T1 T2 T3 TN
s1 s2 s3 sN

x1 x2 x3 xN

y

t1 t2 t3 tN
τ1 τ2
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Expansivity + specification ⇒ unique MME

Anosov flows are expansive: ∃ε > 0 s.t. “bi-infinite Bowen ball”
Γε(x) = {y : d(fty , ftx) ≤ ε ∀t ∈ R} contained in orbit of x .

Theorem (Bowen 1974/75, Franco 1977)

Let ft be an expansive flow on a compact metric space with the
specification property. Then there is a unique MME µ.

If ft has the periodic specification property, then periodic orbits
equidistribute to µ.

In particular, applies to geodesic flows in negative curvature.

Part of proof is to show C−1 ≤ T# Per(T )

eThtop
≤ C .

Margulis asymptotics: ratio converges to 1/htop as T →∞.
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Nonpositive curvature: two important examples

Now suppose M has nonpositive curvature;
some sectional curvatures may vanish, but
can never be positive.

Example 1: take surface of negative curvature,
flatten near a periodic orbit

[Picture: Ballmann, Brin, Eberlein]

Dim > 2: Other possibilities

Gromov’s example: 3-dim

Some sectional curvature = 0
at every point

No neg. curved metric
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Partition into singular (non-hyp) and regular (hyp) parts

Still have universal cover, horospheres, E s,u, ...
but now M can have singular geodesics with the
following (equivalent) properties:

1 ∃ non-trivial parallel Jacobi field

2 Horospheres have higher-order tangency

3 E s,u no longer transverse

Sing = {v ∈ T 1M : cv is singular} Reg = T 1M \ Sing

µ ∈Mf is hyperbolic (all Lyapunov exp. 6= 0) iff µ(Reg) = 1

M is rank 1 if Reg 6= ∅; then Reg is open, dense, and invariant

Example 1: Sing is a union of (possibly degenerate) flat strips

Gromov’s example: central strip + all orbits staying in one half
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Patterson–Sullivan–Knieper

Theorem (Knieper 1998)

If M has rank 1, then it has a unique MME µ, which is given by a
Patterson–Sullivan construction. The MME µ is fully supported
and is the limiting distribution of periodic orbits.

Guarantees entropy gap htop(Sing) < htop(T 1M).

Automatic in dim 2. In higher dimensions gap can be small;
modify Gromov’s example to have arbitrarily long ‘neck’

Patterson–Sullivan product structure gives mixing (Babillot 2002)

Countable Markov partitions give Bernoulli when dimM = 2
(Ledrappier, Lima, Sarig 2016).

Specification approach on next slides gives Bernoulli in any di-
mension (Call, Thompson 2019); idea from Ledrappier (1977)
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Decompositions of the space of orbit segments

ft a flow on a compact metric space X . A subset G ⊂ X × R+

represents a collection of finite-length orbit segments.

G has specification if ∀ε > 0 ∃τ s.t. every list of orbit segments
{(xi , ti )}ki=1 ⊂ G has an ε-shadowing τ -connecting orbit.

Same idea as before, but only needed for good orbit segments

Decomposition: P,G,S ⊂ X × R+ and functions
p, g , s : X × R+ → R+ s.t. (p + g + s)(x , t) = t and
(x , p) ∈ P, (fpx , g) ∈ G, (fp+gx , s) ∈ S.

x

fp(x)

fp+g(x)

ft(x)∈ P ∈ G

∈ S

Idea: P,S are “obstructions to specification”; can glue if we first
remove pre-/suffixes from P,S. Need obstructions to be “small”



Introduction Negative curvature Nonpositive curvature No conjugate points

Decomposition for geodesic flow

Given v ∈ T 1M, let Hs(v) be stable horosphere, U s(v) its second
fundamental form, and λs(v) ≥ 0 the smallest eigenvalue of U s(v).
Similarly for λu(v) ≥ 0, and then λ = min(λs , λu).

λ : T 1M → R+ is a lower bound for curvature of horospheres,
and thus bounds contraction/expansion rates

Fix η > 0 and let P = S = B = {(v ,T ) : λ(ftv) ≤ η ∀t ∈ [0,T ]}.
Removing longest such prefix and suffix, remaining part is in
G = {(v ,T ) : λ(v) ≥ η and λ(fT v) ≥ η}.

G has specification (for each fixed η > 0)
use transitivity + local product structure on regular set

This works for the MME, but for ϕ 6= 0 need to be more
careful: then B should include all orbit segments with small
average λ, and G will be related to hyperbolic times (Alves)
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Small obstructions ⇒ uniqueness

Entropy of obstructions to specification:

Qn = {x ∈ X : (x , t) ∈ P ∪ S for some t ∈ [n, n + 1]}
Λn([P ∪ S], ε) := max #{(n, ε)-separated E ⊂ Qn}
h([P ∪ S]) = limε→0 limn→∞

1
n log Λn([P ∪ S], ε)

Entropy of obstructions to expansivity:

Γε(x) = {y ∈ X : d(fty , ftx) ≤ ε ∀t ∈ R}
NE(ε) = {x ∈ X : Γε(x) 6⊂ f[−s,s](x) for any s > 0}
h⊥exp = limε→0 sup{hµ(f ) : µ(NE(ε)) = 1}

Theorem (V.C., Dan Thompson 2016)

Suppose h⊥exp < htop and ∃ decomposition P,G,S s.t. G has
specification and h([P ∪ S]) < htop. Then ∃ a unique MME.
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Applying the general result: Sing controls obstructions

Theorem (Keith Burns, V.C., Todd Fisher, Dan Thompson 2018)

For any rank 1 geodesic flow, obstructions to specification and
expansivity have entropy < htop, and thus there is a unique MME.

Covers many ϕ 6= 0, which was the original motivation.

Step 1: direct proof that htop(Sing) < htop(T 1M)

Step 2: NE(ε) ⊂ Sing, so h⊥exp ≤ htop(Sing)

Step 3: limη→0 h([B]) = htop(Sing)
M(B) ⊂Mη = {µ :

∫
λ ≤ η} ⇒ ⋂

ηM(B) ⊂ ⋂Mη =M0

Knieper gets uniqueness first, and entropy gap as a corollary.
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Extensions to no focal points

No focal points:

Fei Liu, Fang Wang, Weisheng Wu (arXiv 2018), any dim

Patterson–Sullivan approach (following Knieper)

Katrin Gelfert, Rafael Ruggiero (2019), dimension 2

MME via semi-conjugacy to expansive flow with specification

Dong Chen, Nyima Kao, Kiho Park (arXiv 2018), dimension 2

following BCFT (nonuniform specification), get some ϕ 6= 0
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Comparison of curvature conditions

K < 0 K ≤ 0

no focal points: balls in M̃ convex

no conjugate points: p 6= q ∈ M̃
determine unique geodesic

things in M̃ K < 0 K ≤ 0 NFP NCP

t 7→ d(c1(t), c2(t))
when c1(0) = c2(0)

strictly
convex

convex monotonic positive

horospheres str. cvx convex ???

v 7→ E s,u
v = TvW

s,u
v Hölder continuous ???

c1(±∞) = c2(±∞) c1 = c2 flat strip ???
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Available tools in NCP

Theorem (V.C., Gerhard Knieper, Khadim War – arXiv 2019)

Let M be a 2-dimensional Riemannian manifold of genus ≥ 2 with
no conjugate points. Then there is a unique MME.

Step 1: M̃ a disc; unique geodesic ∀p, q; ∂M̃ and Hs,u
v still exist

Step 2: h⊥exp(ε) = 0 for all ε ≤ 1
3 injM: hµ > 0⇒ µ(NE(ε)) = 0

w ∈ Γε(v)⇒ w̃ ∈ Γε(ṽ), so v ∈ NE(ε)⇒ Hs
v ∩ Hu

v nontrivial

hµ > 0 ⇒ µ-a.e. v has W s
v ∩W u

v trivial ∴ Hs
v ∩ Hu

v trivial

Step 3: There is a different metric g0 with negative curvature...

Morse Lemma: Let g , g0 be two metrics on M s.t. g0 has
negative curvature and g has no conjugate points. Then there
is R > 0 such that ∀p, q ∈ M̃, the g -geodesic and g0-geodesic
connecting p to q have Hausdorff distance ≤ R.
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Coarse specification via the Morse lemma

For NCP, bijection between T 1M × (0,∞) and (M̃2 − diag)/π1M

T 1M × (0,∞)
g -orbit segments

(M̃2 − diag)/π1M

T 1M × (0,∞)
g0-orbit segments

R-shadowing

Now given orbit segments (x1, t1), . . . , (xk , tk) for g ,

R-shadow each one by an orbit segment for g0;

R-shadow this list by a single g0 orbit segment (g0-spec.);

R-shadow this single orbit segment by a g -orbit segment.

Thus the g -geodesic flow has specification at scale (≈) 3R
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A uniqueness result at finite scale

Theorem (V.C., Dan Thompson 2016)

X compact metric space, ft : X → X continuous flow, ε > 40δ > 0.

Assume: h⊥exp(ε) < htop(f ). sup{hµ : Γε(x) 6⊂ f[−t,t](x) µ-a.e.}

Assume: Flow has specification at scale δ.

Then (X , {ft}) has a unique measure of maximal entropy.

Surface M of genus ≥ 2 with no conjugate points:

the geodesic flow has h⊥exp( 1
3 injM) = 0 < htop;

the flow has specification at scale 3R. (R from Morse)

If 40 · 3R < 1
3 injM, then the general theorem gives a unique MME.

But we have no reason to expect this... probably R is very large.
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Salvation by residual finiteness

Solution: Replace M with a finite cover N with injN > 360R.

F

Fc−1

Fd−1

Fc

Fd

Fa−1

Fb−1

Fa

Fb

a1

b1

a2

b2

c1

d1

c2

d2

Entropy-preserving bijection between
Mf (T 1M) and Mf (T 1N)

Theorem gives unique MME on T 1N

Thus there is a unique MME on T 1M

Why possible? dimM = 2 implies π1(M) is residually finite.



Introduction Negative curvature Nonpositive curvature No conjugate points

Patterson–Sullivan and counting closed geodesics

One can carry out the Patterson–Sullivan construction and prove
that it gives an MME µ.

Once uniqueness is proved (via specification), it follows that µ is
the unique MME, and hence is ergodic.

With ergodicity in hand, product structure gives mixing via
Babillot’s argument.

Once mixing is known, we can follow approach of Russell Ricks
(arXiv 2019 for CAT(0)) to deduce asymptotic estimates on
number of (free homotopy classes of) periodic orbits:

lim
T→∞

P(T )hT

ehT
= 1 where h = htop(F ).
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Higher dimensions and open questions

Method works for higher-dim M with no conjugate points if

1 ∃ Riemannian metric g0 on M with negative curvature;

2 divergence property: c1(0) = c2(0)⇒ d(c1(t), c2(t))→∞;

3 π1(M) is residually finite;

4 ∃h∗ < htop such that if µ-a.e. v has non-trivially overlapping
horospheres, then hµ ≤ h∗.

First is a real topological restriction: rules out Gromov example.

Second and third might be redundant? No example satisfying (1)
where they are known to fail

Fourth is true if {v : Hs
v ∩ Hu

v trivial} contains an open set.
Unclear if this is always true.

What about ϕ 6= 0? Not clear how to extend these techniques.
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