FINAL EXAM

Thursday, May 9, 2013

> You must give complete justification for all answers in order to receive full credit.

Name: \qquad

	Points	Possible
Problem 1		$/ 15$
Problem 2		$/ 15$
Problem 3		$/ 10$
Problem 4		$/ 10$
Problem 5		$/ 20$
Problem 6		$/ 20$
Problem 7		$/ 10$
Total		$/ 100$

1. (a) Let V be a vector space over a field F, and let $S \subset V$. Define what it means for S to be linearly independent. [5 points]
(b) Consider the vector space $\mathbb{P}_{3}(\mathbb{R})$ consisting of polynomials with degree 3 or less, and the subset

$$
S=\left\{1+x^{3}, x+x^{2}, x^{2}-x^{3}, 1-x\right\} \subset \mathbb{P}_{3}(\mathbb{R})
$$

Does S span $\mathbb{P}_{3}(\mathbb{R})$?
[10 points]
2. For each of the following linear transformations, determine whether it is (i) one-to-one, (ii) onto, and/or (iii) an isomorphism.

$$
\text { (a) } T: \mathbb{M}_{m \times n}(\mathbb{R}) \rightarrow \mathbb{M}_{n \times m}(\mathbb{R}) \text { given by } T(A)=A^{t}
$$

[5 points]
(b) $T: \mathbb{P}(\mathbb{R}) \rightarrow \mathbb{P}(\mathbb{R})$ given by $(T(f))(x)=\int_{0}^{x} f(t) d t$.
[5 points]
(c) $T: M_{n \times n}(F) \rightarrow F$ given by $T(A)=\operatorname{Tr}(A)$.
[5 points]
3. (a) Consider the linear transformation $T: \mathbb{P}_{3}(\mathbb{R}) \rightarrow \mathbb{P}_{3}(\mathbb{R})$ given by $(T f)(x)=(x-1) f^{\prime}(x)+f^{\prime \prime}(x)$. Find the matrix $[T]_{\beta}$, where $\beta=\left\{1, x, x^{2}, x^{3}\right\}$ is the standard basis for $\mathbb{P}_{3}(\mathbb{R})$. [5 points]
(b) Let $A=\left(\begin{array}{cc}2 & 5 \\ -1 & 3\end{array}\right)$ and $\beta=\left\{\binom{1}{1},\binom{1}{2}\right\}$. Compute $\left[L_{A}\right]_{\beta}$, where $L_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is left multiplication by A.
4. Let V be a vector space and $T: V \rightarrow V$ a linear transformation. Prove that $T^{2}=0$ if and only if $R(T) \subset N(T)$.
[10 points]
5. (a) Label each of the following statements true if it holds for all matrices $A, B, C \in \mathbb{M}_{n \times n}(F)$, and false if there are matrices A, B, C for which it fails.
(i) $\operatorname{Tr}(A B C)=\operatorname{Tr}(C A B)$
(ii) $\operatorname{det}(A B C)=\operatorname{det}(C A B)$
(iii) $\operatorname{Tr}(A B C)=\operatorname{Tr}(C B A)$
(iv) $\operatorname{det}(A B C)=\operatorname{det}(C B A)$
(v) $\operatorname{Tr}\left(A^{-1}\right)=(\operatorname{Tr}(A))^{-1}$ whenever A is invertible
(vi) $\operatorname{det}\left(A^{-1}\right)=(\operatorname{det}(A))^{-1}$ whenever A is invertible
(b) Consider the permutation $\pi=(3412)$. Write down the matrix of this permutation (this is a 4×4 matrix of 0 s and 1 s). Determine whether this permutation is even or odd.
(c) Compute det $\left(\begin{array}{cccc}0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & -2 & 0 \\ 4 & -1 & 0 & 0\end{array}\right)$.
6. Consider the matrix $A=\left(\begin{array}{ccc}1 & -2 & -2 \\ -2 & 1 & -2 \\ 2 & 2 & 5\end{array}\right)$.
(a) Find the eigenvalues of A and their algebraic multiplicities. (Hint: when you try to factor the cubic polynomial, you will find that it has $(t-1)$ as a factor.)
(b) Continue working with the matrix $A=\left(\begin{array}{ccc}1 & -2 & -2 \\ -2 & 1 & -2 \\ 2 & 2 & 5\end{array}\right)$.

For each of the eigenvalues you found in part (a), find a basis for the corresponding eigenspace, and determine the geometric multiplicity.
(c) Find a matrix Q such that $Q^{-1} A Q$ is diagonal.
7. (a) The matrix $A=\left(\begin{array}{cc}0 & 1 \\ -1 & \sqrt{3}\end{array}\right)$ has an eigenvalue $\lambda=\frac{\sqrt{3}}{2}+\frac{1}{2} i=e^{i \pi / 6} \in \mathbb{C}$ with associated complex eigenvector $v=(2, \sqrt{3}+i) \in \mathbb{C}^{2}$. Find a matrix $Q \in \mathbb{M}_{2 \times 2}(\mathbb{R})$ and real numbers $r, \theta \in \mathbb{R}$ such that $Q^{-1} A Q$ has the form $r\left(\begin{array}{cc}\cos \theta-\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$.
[5 points]
(b) Given $\lambda \in \mathbb{R}$ and $k \in \mathbb{N}$, write a formula for $\left(\begin{array}{cc}\lambda & 1 \\ 0 & \lambda\end{array}\right)^{k}$. Use induction to prove that this formula holds for all $k \in \mathbb{N}$.
[5 points]
(c) Extra credit: Fix $\lambda \in \mathbb{R}$ and let $J=\left(\begin{array}{ccc}\lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda\end{array}\right)$.

Find a formula for J^{k} that works for any $k \in \mathbb{N}$, and use induction to prove that your formula is true.

This page left blank to provide extra space for solutions.

This page left blank to provide extra space for solutions.

