FINAL EXAM

Thursday, May 9, 2013

You must give complete justification for all answers in order to receive full credit.

Name: _____

	Points	Possible
Problem 1		/15
Problem 2		/15
Problem 3		/10
Problem 4		/10
Problem 5		/20
Problem 6		/20
Problem 7		/10
Total		/100

1. (a) Let V be a vector space over a field F, and let $S \subset V$. Define what it means for S to be linearly independent. [5 points]

(b) Consider the vector space $\mathbb{P}_3(\mathbb{R})$ consisting of polynomials with degree 3 or less, and the subset

$$S = \{1 + x^3, x + x^2, x^2 - x^3, 1 - x\} \subset \mathbb{P}_3(\mathbb{R}).$$

Does S span $\mathbb{P}_3(\mathbb{R})$? [10 points]

	Math 4377/6308	Final Exam	Page 3 of 12
,	For each of the following	r linear transformations	determine whether it

2. For each of the following linear transformations, determine whether it is (i) one-to-one, (ii) onto, and/or (iii) an isomorphism. (a) $T: \mathbb{M}_{m \times n}(\mathbb{R}) \to \mathbb{M}_{n \times m}(\mathbb{R})$ given by $T(A) = A^t$. [5 points]

(b)
$$T: \mathbb{P}(\mathbb{R}) \to \mathbb{P}(\mathbb{R})$$
 given by $(T(f))(x) = \int_0^x f(t) dt.$ [5 points]

(c)
$$T: M_{n \times n}(F) \to F$$
 given by $T(A) = \text{Tr}(A)$. [5 points]

Math $4377/6308$	Final Exam	Page 4 of 12
------------------	------------	----------------

3. (a) Consider the linear transformation $T: \mathbb{P}_3(\mathbb{R}) \to \mathbb{P}_3(\mathbb{R})$ given by (Tf)(x) = (x-1)f'(x) + f''(x). Find the matrix $[T]_\beta$, where $\beta = \{1, x, x^2, x^3\}$ is the standard basis for $\mathbb{P}_3(\mathbb{R})$. [5 points]

(b) Let
$$A = \begin{pmatrix} 2 & 5 \\ -1 & 3 \end{pmatrix}$$
 and $\beta = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$. Compute $[L_A]_\beta$, where $L_A \colon \mathbb{R}^2 \to \mathbb{R}^2$ is left multiplication by A . [5 points]

Math $4377/6308$	Final Exam	Page 5 of 12

4. Let V be a vector space and $T: V \to V$ a linear transformation. Prove that $T^2 = 0$ if and only if $R(T) \subset N(T)$. [10 points]

- 5. (a) Label each of the following statements true if it holds for all matrices $A, B, C \in \mathbb{M}_{n \times n}(F)$, and false if there are matrices A, B, C for which it fails. [12 points]
 - (i) $\operatorname{Tr}(ABC) = \operatorname{Tr}(CAB)$
 - (ii) $\det(ABC) = \det(CAB)$
 - (iii) $\operatorname{Tr}(ABC) = \operatorname{Tr}(CBA)$
 - (iv) $\det(ABC) = \det(CBA)$
 - (v) $\operatorname{Tr}(A^{-1}) = (\operatorname{Tr}(A))^{-1}$ whenever A is invertible
 - (vi) $det(A^{-1}) = (det(A))^{-1}$ whenever A is invertible
 - (b) Consider the permutation $\pi = (3 \ 4 \ 1 \ 2)$. Write down the matrix of this permutation (this is a 4×4 matrix of 0s and 1s). Determine whether this permutation is even or odd. [3 points]

(c) Compute det
$$\begin{pmatrix} 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & -2 & 0 \\ 4 & -1 & 0 & 0 \end{pmatrix}$$
. [5 points]

(a) Find the eigenvalues of A and their algebraic multiplicities. (Hint: when you try to factor the cubic polynomial, you will find that it has (t-1) as a factor.) [7 points] (b) Continue working with the matrix $A = \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ 2 & 2 & 5 \end{pmatrix}$.

For each of the eigenvalues you found in part (a), find a basis for the corresponding eigenspace, and determine the geometric multiplicity. [8 points]

(c) Find a matrix Q such that $Q^{-1}AQ$ is diagonal. [5 points]

7. (a) The matrix $A = \begin{pmatrix} 0 & 1 \\ -1 & \sqrt{3} \end{pmatrix}$ has an eigenvalue $\lambda = \frac{\sqrt{3}}{2} + \frac{1}{2}i = e^{i\pi/6} \in \mathbb{C}$ with associated complex eigenvector $v = (2, \sqrt{3} + i) \in \mathbb{C}^2$. Find a matrix $Q \in \mathbb{M}_{2 \times 2}(\mathbb{R})$ and real numbers $r, \theta \in \mathbb{R}$ such that $Q^{-1}AQ$ has the form $r \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$. [5 points]

(b) Given $\lambda \in \mathbb{R}$ and $k \in \mathbb{N}$, write a formula for $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}^k$. Use induction to prove that this formula holds for all $k \in \mathbb{N}$. [5 points]

(c) **Extra credit:** Fix $\lambda \in \mathbb{R}$ and let $J = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}$. Find a formula for J^k that is a let f.

Find a formula for J^k that works for any $k \in \mathbb{N}$, and use induction to prove that your formula is true.

 $This \ page \ left \ blank \ to \ provide \ extra \ space \ for \ solutions.$

 $This \ page \ left \ blank \ to \ provide \ extra \ space \ for \ solutions.$