MIDTERM TEST #2

Thursday, March 28, 2013

You must give complete justification for all answers in order to receive full credit.

Name: _____

	Points	Possible
Problem 1		/10
Problem 2		/15
Problem 3		/20
Problem 4		/20
Problem 5		/20
Problem 6		/15
Total		/100

1. Let $\{v_1, v_2\}$ be a basis for \mathbb{R}^2 . Is $\{2v_1 + v_2, 2v_1 - v_2\}$ necessarily a basis for \mathbb{R}^2 ? [10 points]

2. Determine whether or not each of the following functions $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation. If it is not linear, prove that it is not linear. If it is linear, write the matrix $[T]_{\beta}$, where β is the standard ordered basis for \mathbb{R}^2 . (a) $T(a_1, a_2) = (\sin(a_1), a_2)$

[5 points]

(b)
$$T(a_1, a_2) = (a_1, a_2 + 1)$$
 [5 points]

(c)
$$T(a_1, a_2) = (2a_1 + a_2, 3a_1 - 2a_2)$$
 [5 points]

3. Let V and W be vector spaces and T: V → W a linear transformation. Suppose that T is one-to-one and that S is a subset of V.
(a) State what it means for S to be linearly independent. [5 points]

(b) Prove that S is linearly independent if and only if T(S) is linearly independent. [15 points]

4. Consider the ordered bases β and β' for \mathbb{R}^2 given by

 $\beta = \{(1,1), (1,-1)\}, \qquad \beta' = \{(3,1), (-1,3)\}.$

(a) Find the change of coordinate matrix Q that changes β' -coordinates into β -coordinates. [10 points]

(b) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation and let $A = [T]_{\beta}$. Write an expression for $[T]_{\beta'}$. [10 points] 5. For each of the following linear transformations, determine whether it is (i) one-to-one, (ii) onto, and/or (iii) an isomorphism.
(a) T: M_{m×n}(ℝ) → M_{n×m}(ℝ) given by T(A) = A^t. [10 points]

(b) $T: \mathbb{P}(\mathbb{R}) \to \mathbb{P}(\mathbb{R})$ given by (T(f))(x) = f'(x). [10 points]

	Math 4377/6308	Midterm Test $\#2$	Page 7 of 8
6.	(a) Give a matrix	A such that $A \neq 0$ but $A^2 = 0$.	[5 points]

(b) Give matrices A, B such that AB = I but $BA \neq I$. [5 points]

(c) Consider the matrix

$$A = \begin{pmatrix} 5 & 0 & -1 & 2 \\ 2 & 1 & 0 & 3 \\ -1 & 1 & 1 & -2 \\ -3 & 0 & 3 & 4 \end{pmatrix}.$$

Let $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4$ be the standard (column) basis vectors in \mathbb{R}^4 . Compute $A\mathbf{e}_1, A\mathbf{e}_2, A\mathbf{e}_3$, and $A\mathbf{e}_4$. [5 points] $This \ page \ left \ blank \ to \ provide \ extra \ space \ for \ solutions.$