MIDTERM TEST \#2

Thursday, March 28, 2013

> You must give complete justification for all answers in order to receive full credit.

Name:

	Points	Possible
Problem 1		$/ 10$
Problem 2		$/ 15$
Problem 3		$/ 20$
Problem 4		$/ 20$
Problem 5		$/ 20$
Problem 6		$/ 15$
Total		$/ 100$

1. Let $\left\{v_{1}, v_{2}\right\}$ be a basis for \mathbb{R}^{2}. Is $\left\{2 v_{1}+v_{2}, 2 v_{1}-v_{2}\right\}$ necessarily a basis for \mathbb{R}^{2} ?
[10 points]
2. Determine whether or not each of the following functions $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation. If it is not linear, prove that it is not linear. If it is linear, write the matrix $[T]_{\beta}$, where β is the standard ordered basis for \mathbb{R}^{2}.
(a) $T\left(a_{1}, a_{2}\right)=\left(\sin \left(a_{1}\right), a_{2}\right)$
[5 points]
(b) $T\left(a_{1}, a_{2}\right)=\left(a_{1}, a_{2}+1\right)$
(c) $T\left(a_{1}, a_{2}\right)=\left(2 a_{1}+a_{2}, 3 a_{1}-2 a_{2}\right)$
[5 points]
3. Let V and W be vector spaces and $T: V \rightarrow W$ a linear transformation. Suppose that T is one-to-one and that S is a subset of V.
(a) State what it means for S to be linearly independent. [5 points]
(b) Prove that S is linearly independent if and only if $T(S)$ is linearly independent.
[15 points]
4. Consider the ordered bases β and β^{\prime} for \mathbb{R}^{2} given by

$$
\beta=\{(1,1),(1,-1)\}, \quad \beta^{\prime}=\{(3,1),(-1,3)\} .
$$

(a) Find the change of coordinate matrix Q that changes β^{\prime}-coordinates into β-coordinates.
[10 points]
(b) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation and let $A=[T]_{\beta}$. Write an expression for $[T]_{\beta^{\prime}}$.
[10 points]
5. For each of the following linear transformations, determine whether it is (i) one-to-one, (ii) onto, and/or (iii) an isomorphism.

$$
\text { (a) } T: \mathbb{M}_{m \times n}(\mathbb{R}) \rightarrow \mathbb{M}_{n \times m}(\mathbb{R}) \text { given by } T(A)=A^{t}
$$

[10 points]
(b) $T: \mathbb{P}(\mathbb{R}) \rightarrow \mathbb{P}(\mathbb{R})$ given by $(T(f))(x)=f^{\prime}(x)$.
[10 points]
6. (a) Give a matrix A such that $A \neq 0$ but $A^{2}=0 . \quad[5$ points]
(b) Give matrices A, B such that $A B=I$ but $B A \neq I . \quad[5$ points]
(c) Consider the matrix

$$
A=\left(\begin{array}{cccc}
5 & 0 & -1 & 2 \\
2 & 1 & 0 & 3 \\
-1 & 1 & 1 & -2 \\
-3 & 0 & 3 & 4
\end{array}\right)
$$

Let $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}$ be the standard (column) basis vectors in \mathbb{R}^{4}. Compute $A \mathbf{e}_{1}, A \mathbf{e}_{2}, A \mathbf{e}_{3}$, and $A \mathbf{e}_{4}$.
[5 points]

This page left blank to provide extra space for solutions.

