MIDTERM TEST \#1

Thursday, February 21, 2013

> You must give complete justification for all answers in order to receive full credit.

Name:

	Points	Possible
Problem 1		$/ 10$
Problem 2		$/ 25$
Problem 3		$/ 20$
Problem 4		$/ 20$
Problem 5		$/ 10$
Problem 6		$/ 15$
Total		$/ 100$

1. (a) Let $x \sim y$ be a relation on a set X. Define what it means for \sim to be an equivalence relation.
(b) Define a relation on \mathbb{R} by $x \sim y$ if and only if $x y \geq 0$. Is this an equivalence relation? Prove your answer.
2. (a) Let $W=\left\{(x, y) \in \mathbb{R}^{2} \mid x y+x=0\right\}$. Is W a subspace of \mathbb{R}^{2} ? Prove your answer.
[10 points]
(b) Let V and W be vector spaces and let $T: V \rightarrow W$ be a linear transformation. Let W_{1} be a subspace of W and define a set $V_{1} \subset V$ by $V_{1}=\left\{x \in V \mid T(x) \in W_{1}\right\}$. Show that V_{1} is a subspace of V.
[15 points]
3. (a) Define what it means for a vector space V to be the direct sum of two subspaces $W_{1}, W_{2} \subset V$.
(b) In \mathbb{R}^{3}, consider the subspaces $W_{1}=\{(0,-b, b) \mid b \in \mathbb{R}\}$ and $W_{2}=\left\{\left(a_{1}, a_{2}+a_{1}, a_{2}\right) \mid a_{1}, a_{2} \in \mathbb{R}\right\}$. Is $\mathbb{R}^{3}=W_{1} \oplus W_{2}$? Justify your answer.
[15 points]
4. (a) Let V be a vector space over a field F, and let $S \subset V$. Define what it means for S to be linearly independent. [5 points]
(b) Consider the vector space $\mathbb{P}_{3}(\mathbb{R})$ consisting of polynomials with degree 3 or less, and the subset

$$
S=\left\{1+x^{3}, x+x^{2}, x^{2}-x^{3}, 1-x\right\} \subset \mathbb{P}_{3}(\mathbb{R})
$$

Does S span $\mathbb{P}_{3}(\mathbb{R})$?
[15 points]
5. Let $\left\{v_{1}, v_{2}\right\}$ be a basis for \mathbb{R}^{2}. Is $\left\{v_{1}+v_{2}, v_{1}-v_{2}\right\}$ necessarily a basis for \mathbb{R}^{2} ?
[10 points]
6. (a) Let V be a vector space. State what it means for V to be finitedimensional. Assuming V is finite-dimensional, state the definition of the dimension of V.
(b) Let V and W be finite-dimensional vector spaces and $T: V \rightarrow W$ a linear transformation. Suppose that $\operatorname{dim} W>\operatorname{dim} V$, and prove that T is not onto.
[10 points]

This page left blank to provide extra space for solutions.

