HOMEWORK 1

Due 4 pm Wednesday, August 28.

1. Determine whether each of the following statements is true or false. Justify your answers.
(a) $\forall a \in \mathbb{Z}, \exists n \in \mathbb{Z}$ such that we have $a+n=10$.
(b) $\exists n \in \mathbb{Z}$ such that $\forall a \in \mathbb{Z}$ we have $a+n=10$.
(c) $\forall a \in \mathbb{R}, \exists n \in \mathbb{Z}$ such that we have $a+n=10$.
(d) $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{2}, \exists a, b, c \in \mathbb{R}$ with $(a, b, c) \neq(0,0,0)$ such that $a \mathbf{u}+b \mathbf{v}+c \mathbf{w}=\mathbf{0}$. Hint: the last equation can be turned into a system of two equations in three variables.
2. Write the logical negation of the sentence in 1.(d).
3. Consider the complex numbers $z=2-i$ and $w=1+3 i$. Write the complex numbers $z w, \bar{w}, \bar{z}+w,|w|$, and $\frac{1}{z}$ in the form $a+b i$, where $a, b \in \mathbb{R}$.
4. List all of the elements in the following sets.
(a) $\left\{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid 1 \leq a<3, b^{2} \leq 1\right\}$
(b) $\left\{(c, d) \in \mathbb{Z} \times \mathbb{N}\left|d^{3} \leq 8,|c| \leq d\right\}\right.$
5. Draw a sketch of the following subsets of \mathbb{R}^{2}.
(a) $\left\{(x, y) \in \mathbb{R}^{2} \mid(x+y)(x-1)=0\right\}$
(b) $\left\{(x, y) \in \mathbb{R}^{2} \mid\left(y^{2}-4\right)\left(x^{2}-y^{2}\right)=0\right\}$
6. For each of the following maps, determine whether it is $1-1$, and whether it is onto.
(a) $T: \mathbb{R} \rightarrow \mathbb{R}$ given by $T(x)=x^{2}$
(b) $T: \mathbb{R} \rightarrow \mathbb{R}$ given by $T(x)=x^{3}$
(c) $T: \mathbb{R} \rightarrow \mathbb{R}$ given by $T(x)= \begin{cases}x-1 & x \leq 0 \\ x+1 & x>0\end{cases}$
