HOMEWORK 1

Due 4pm Wednesday, August 28.

- 1. Determine whether each of the following statements is true or false. Justify your answers.
 - (a) $\forall a \in \mathbb{Z}, \exists n \in \mathbb{Z} \text{ such that we have } a + n = 10.$
 - (b) $\exists n \in \mathbb{Z}$ such that $\forall a \in \mathbb{Z}$ we have a + n = 10.
 - (c) $\forall a \in \mathbb{R}, \exists n \in \mathbb{Z} \text{ such that we have } a + n = 10.$
 - (d) $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^2, \exists a, b, c \in \mathbb{R}$ with $(a, b, c) \neq (0, 0, 0)$ such that $a\mathbf{u} + b\mathbf{v} + c\mathbf{w} = \mathbf{0}$. Hint: the last equation can be turned into a system of two equations in three variables.
- 2. Write the logical negation of the sentence in 1.(d).
- **3.** Consider the complex numbers z = 2 i and w = 1 + 3i. Write the complex numbers $zw, \bar{w}, \bar{z} + w, |w|$, and $\frac{1}{z}$ in the form a + bi, where $a, b \in \mathbb{R}$.
- 4. List all of the elements in the following sets. (a) $\{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid 1 \leq a < 3, b^2 \leq 1\}$ (b) $\{(c,d) \in \mathbb{Z} \times \mathbb{N} \mid d^3 \le 8, |c| \le d\}$
- **5.** Draw a sketch of the following subsets of \mathbb{R}^2 . (a) $\{(x,y) \in \mathbb{R}^2 \mid (x+y)(x-1) = 0\}$ (b) $\{(x,y) \in \mathbb{R}^2 \mid (y^2 - 4)(x^2 - y^2) = 0\}$
- 6. For each of the following maps, determine whether it is 1-1, and whether it is onto.
 - (a) $T: \mathbb{R} \to \mathbb{R}$ given by $T(x) = x^2$ (b) $T: \mathbb{R} \to \mathbb{R}$ given by $T(x) = x^3$ (c) $T: \mathbb{R} \to \mathbb{R}$ given by $T(x) = \begin{cases} x-1 & x \le 0 \\ x+1 & x > 0 \end{cases}$