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Fall 2013

HOMEWORK 10

Due 4pm Wednesday, November 20. You will be graded not only
on the correctness of your answers but also on the clarity and com-
pleteness of your communication. Write in complete sentences.

1. Let A be an n × n matrix with eigenvalues λ1, . . . , λn. Suppose that
all n eigenvalues are distinct and have |λj| < 1 for all j. Show that
ANv → 0 as N →∞ for every v ∈ Kn.

2. We showed in class that Tr(ABC) = Tr(CAB) for any A,B,C ∈Mn×n.
Is it always true that Tr(ABC) = Tr(BAC)? If so, prove it; if not,
find a counterexample.

3. Let A be an upper triangular matrix. Show that the eigenvalues of A
are precisely the diagonal entries of A, and that the algebraic multiplic-
ity of an eigenvalue is the number of times it appears on the diagonal.

4. Let n = k + m, and let A ∈ Mn×n have the block form A = ( X Y
0 Z ),

where X ∈ Mk×k, Y ∈ Mk×m, Z ∈ Mm×m, and 0 is the m × k zero
matrix. Show that detA = (detX)(detZ). Is it always true that
det ( X Y

W Z ) = (detX)(detZ)− (detY )(detW )?

5. Fix θ ∈ R such that θ is not a multiple of π, and consider the matrix

A =

(
cos θ − sin θ
sin θ cos θ

)
.

Show that A has no real eigenvalues but has two distinct complex
eigenvalues. Find the corresponding complex eigenvectors.

6. Let A =

 0 −2 −3
−1 1 −1
2 2 5

 ∈M3×3(R).

(i) Determine all the eigenvalues of A.
(ii) For each eigenvalue λ of A, find the set of eigenvectors correspond-

ing to λ.
(iii) Is it possible to find a basis for R3 consisting of eigenvectors of

A? If so, do it, and then determine an invertible matrix Q and a
diagonal matrix D such that Q−1AQ = D.


