HOMEWORK 10

Due $4 p m$ Wednesday, November 20. You will be graded not only on the correctness of your answers but also on the clarity and completeness of your communication. Write in complete sentences.

1. Let A be an $n \times n$ matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Suppose that all n eigenvalues are distinct and have $\left|\lambda_{j}\right|<1$ for all j. Show that $A^{N} v \rightarrow 0$ as $N \rightarrow \infty$ for every $v \in K^{n}$.
2. We showed in class that $\operatorname{Tr}(A B C)=\operatorname{Tr}(C A B)$ for any $A, B, C \in \mathbb{M}_{n \times n}$. Is it always true that $\operatorname{Tr}(A B C)=\operatorname{Tr}(B A C)$? If so, prove it; if not, find a counterexample.
3. Let A be an upper triangular matrix. Show that the eigenvalues of A are precisely the diagonal entries of A, and that the algebraic multiplicity of an eigenvalue is the number of times it appears on the diagonal.
4. Let $n=k+m$, and let $A \in \mathbb{M}_{n \times n}$ have the block form $A=\left(\begin{array}{cc}X & Y \\ 0 & Z\end{array}\right)$, where $X \in \mathbb{M}_{k \times k}, Y \in \mathbb{M}_{k \times m}, Z \in \mathbb{M}_{m \times m}$, and $\mathbf{0}$ is the $m \times k$ zero matrix. Show that $\operatorname{det} A=(\operatorname{det} X)(\operatorname{det} Z)$. Is it always true that $\operatorname{det}\left({\underset{W}{W}}_{X}^{Y}\right)=(\operatorname{det} X)(\operatorname{det} Z)-(\operatorname{det} Y)(\operatorname{det} W)$?
5. Fix $\theta \in \mathbb{R}$ such that θ is not a multiple of π, and consider the matrix

$$
A=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) .
$$

Show that A has no real eigenvalues but has two distinct complex eigenvalues. Find the corresponding complex eigenvectors.
6. Let $A=\left(\begin{array}{ccc}0 & -2 & -3 \\ -1 & 1 & -1 \\ 2 & 2 & 5\end{array}\right) \in \mathbb{M}_{3 \times 3}(\mathbb{R})$.
(i) Determine all the eigenvalues of A.
(ii) For each eigenvalue λ of A, find the set of eigenvectors corresponding to λ.
(iii) Is it possible to find a basis for \mathbb{R}^{3} consisting of eigenvectors of A ? If so, do it, and then determine an invertible matrix Q and a diagonal matrix D such that $Q^{-1} A Q=D$.

