Math 4377/6308 Advanced Linear Algebra I Fall 2013
Dr. Vaughn Climenhaga, PGH 651A

HOMEWORK 3

Due 4pm Wednesday, September 11. You will be graded not only
on the correctness of your answers but also on the clarity and com-
pleteness of your communication. Write in complete sentences.

1. Consider the polynomials f(z) = 22® —2*+2+3, g1(z) = 2 +2*+2+1,
g2(r) = 2+ +1, and g3(z) = x+ 1. Determine (with proof) whether
or not f S Span{gl7927g3}‘

Solution. [5 points] Expressing f as a linear combination of vectors
of {g1, g2, g3} amounts to solving the equation

f(x) = ar91(x) + azg2(x) + asgs(x)
=a(P+ 2+ + 1) +tax(@®+x+1) taz(z+1)
= a12° + (a1 + az)z® + (ay + ag + az)x + (a1 + az + as).

Comparing coefficients this becomes the system of equations

a, = 2,
a + a, = —1,
a1 +as+az =1,
a1 +as +az = 3.
Subracting the third equation from the fourth (that is, comparing the
linear and constant coefficients of the two polynomials in question)

gives the inconsistent equation 0 = 2, and so the system has no so-
lutions. This means that f is not a linear combination of g1, g2, g3.

2. Consider the following three vectors in K3: u; = (é), Uy = <(§), and

Uz = <(£) Prove that {uy,us,u3} is a basis for K3,

Solution. [10 points] We must show that {uy,us, us} is linearly in-
dependent, and that it spans K3.
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Proof that it spans. To show that these three vectors generate K3
it is enough to show that the equation x = aju; + asus + asus has a
solution ay, as,az € K for every x € K3. Given z = (11,79, 23) € K3,
this equation becomes the system

ay + as = T,
(1) a1 + az = xa,
Ao + a3 = T3.
Subtracting the second equation from the first gives
Az — a3 = T1 — T2,
and adding this to the third gives
209 = X1 — X9 + T3.

Similar manipulations let us solve for ay, az, and we conclude that

(2)
1+ To — T3 Ty — To + T3 —X1 + T + T3
ay = ——— g = ——(—— as =
2 ’ 2 ’ 2
solves the system and expresses x as a linear combination of uq, usg, us.
In particular, these vectors span K3.

Proof that it is linearly independent. The computation above solving
the system (1) shows that if aju; + asus + azuz = 0, then a; = as =
az = 0. This follows from (2) and shows that {u,us, uz} is linearly
independent.

. Let L C V be linearly independent and let v € V' \ L. Show that
L U {v} is linearly independent if and only if v ¢ span L.

Solution. [10 points] We prove the equivalent statement that LU{v}
is linearly dependent if and only if v € span L.

(«<). Suppose that v € span L. Then there are vq,...,v, € L and
C1,...,c, € K such that v = cjv; + -+ + ¢,v,, and thus vy + - - +
cnty + (—1)v = 0. Because v # v; for each 1 < i < n, this gives a
non-trivial representation of 0 as a linear combination of elements of
LU {v}, so LU{v} is linearly dependent.
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(=). Suppose LU{v} is linearly dependent. Then there are vy, ..., v, €
L and ¢y, cyq,...,c, € K such that

cov + vy + - -+ cpv, = 0.

If ¢ = 0, then the above would be a non-trivial representation of 0
as a linear combination of vectors in L: because L is linearly indepen-
dent, no such representation exists, and we conclude that ¢y # 0. In
particular, we can solve for v to obtain

v=—ci(cg' vy — -+ — cp(cgt)v, € span L.

. Suppose that Yi,...,Y,, are subspaces of V with the property that

V=Y, +---+Y,,. Show that the following are equivalent:

(a) every v € V can be written in a unique way as v =y + -+ + Y,
where y; € Y; for 1 <i < m;

(b) ify; € Yy and 1 + -+ 4 Yy = 0, then gy = - - - = y,, = 0.

Hint: This is very similar to Proposition 3.6 in the course notes.

Solution. [10 points] (a) = (b). Note that 0 € Y; for every ¢, and in
particular taking y; = 0 gives a way to write 0 as a sum of elements of
Y1, ..., Y. By property (a) this is the only way to write 0 as such a
sum, and so y; + -+ + Y, = 0 implies y; = --- =y, = 0.

(b) = (a). Suppose there is some v € V which can be written as
v=wy1+ - +ynand v =2z +---+ 2,, where y;, z; € Y; for every i.
Then we have

y1++ymzzl++zm’

and subtracting gives

(y1 —2z1) + -+ (Ym — 2m) = 0.

Because Y; is a subspace, we have y; — z; € Y; for every 4, and now
property (b) implies that y; — z; = 0 for every 7 — that is, y; = z;. Thus
the representation as v = ), y; is unique for every v € V.
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. Let S7 and S5 be subsets of a vector space V. Show that span(S;USy) =
span(St) + span(Ss).

Solution. [10 points/] To show that span(S; U Sy) = span(S;) +
span(S;) we show both inclusions.

(C): Given z € span(S; U Sy), the definition of span implies that
there exist uy, -+ ,u, € Sy US; and ay,---,a, € K such that x =
> a;u;. Now each u; is in either Sy or Sy (or both), so we can
rewrite the set {uy,...,u,} as {vi,...,vp, w1, ..., wy}, where v; €
Sp and w; € S. Similarly, rewrite the coefficients {ay,...,a,} as
{b1,...,bg,c1,...,cnm}, keeping each coefficient with the vector it was
originally with, so that

T =aiu; + -+ apu, = (bvg + -+ bpvg) + (crwy + -+ F Cpwi).

The sum in the first set of brackets is an element of span(S;), and the
sum in the second set of brackets is an element of span(.Sz). This shows
that x is an element of span(S;) + span(Ss), which establishes the first
inclusion.

(D): For the second inclusion, we fix an arbitrary = € span(S;) +
span(S;) and note that x can be written as © = y + z where y €
span(S;), z € span(Sy). Now by definition of span we have

Yy =bivg + -+ + bpvg,

Z=Cwi + -+ Wy
for some vy,...,v, € S, wy,...,w,y, € Sy, and by, ..., bg,c1,...,Cpm €
K. Adding the expressions for y and z together gives x = y + z as

a linear combination of elements of S; U Sy, hence = € span(S; U Sy),
which completes the proof.

. Show that if {z,y} is a basis for X, then so is {z + y,z — y}.

Solution. [10 points] First check that it spans. Given any v € X,
there exist a,b € K such that v = ax + by. (This is because {x,y} is
a basis.) We want to write v = c(z +y) + d(x — y) for some ¢,d € K.
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This expands to v = (¢ + d)z + (¢ — d)y, and so we want ¢, d to solve

c+d=a,
c—d=b.
Adding the equations gives ¢ = “TH’, subtracting them gives d = “T_b

Since there is a solution for all a,b € K, hence for all v € X, we
conclude that {x + y,x — y} spans X.

Now we check that {x 4y, x —y} is linearly independent. If ¢,d € K
are such that c(x+y)+d(x—y) = 0, then we have (c+d)z+(c—d)y = 0.
By linear independence of {z,y}, this implies that ¢ +d = 0 and
¢ —d = 0. The second of these gives d = ¢, whence the first gives
2¢ = 0, so that d = ¢ = 0. This implies that {x + y,x — y} is linearly
independent. Thus it is a basis.

Let V={fePs| f(1) = f(2) = 0} be the set of cubic polynomials
that vanish at the points 1 and 2.
(a) Show that V is a subspace of Ps.

Solution. [5 points] If f,g € V and ¢ € K, then we check that
cf+geV:

(cf+9)(1) = cf(1) +9(1) =c-0+0=0,

and similarly for (¢f + ¢)(2). Thus V' is a subspace. (Note that it
is non-empty because it contains the zero polynomial.)

(b) Determine dim V' by finding a basis for V.

Solution. [10 points/ Recall that a polynomial f has f(1) = 0 if
and only if it has (x — 1) as a factor. Similarly with (z —2), so we
conclude that every f € V is of the form f(x) = g(x)(z—1)(z—2)
for some polynomial g.

Because deg f = 2 4+ deg g < 3, we see that g must be an element
of P;. Thus g(z) = ax + b for some a,b € K. In particular, we
claim that fi(z) = z(x — 1)(x — 2) (coming from g(z) = ) and
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fa(z) = (x —1)(z — 2) (coming from g(z) = 1) form a basis for V,
so that dim V' = 2.

To see this, first observe that (af; + bfs)(z) = (ax +b)(x — 1)(z —
2), and by the above discussion every polynomial in V' is of this
form. Thus V = span{fi, fo}. Moreover, if af; + bf; is the zero
polynomial, then we must have a = b = 0, so {f1, f2} is linearly
independent. Thus it is a basis for V.




