HOMEWORK 4 - solutions

Due $4 p m$ Wednesday, September 18. You will be graded not only on the correctness of your answers but also on the clarity and completeness of your communication. Write in complete sentences.

1. $V=\mathbb{C}^{n}$ is naturally a vector space over \mathbb{C}, in which case it has dimension n, but it can also be viewed as a vector space over \mathbb{R}. Show that as a vector space over \mathbb{R}, the dimension of V is equal to $2 n$.

Solution. [10 points] Let $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\} \subset \mathbb{C}^{n}$ be the standard basis for \mathbb{C}^{n}. Then every element $v \in \mathbb{C}^{n}$ can be written in a unique way as

$$
\begin{aligned}
v & =c_{1} \mathbf{e}_{1}+\cdots+c_{n} \mathbf{e}_{n} \\
& =\left(a_{1}+i b_{1}\right) \mathbf{e}_{1}+\cdots+\left(a_{n}+i b_{n}\right) \mathbf{e}_{n},
\end{aligned}
$$

where $c_{i} \in \mathbb{C}$ and $a_{i}, b_{i} \in \mathbb{R}$. In particular, every $v \in \mathbb{C}^{n}$ can be written in a unique way as

$$
v=a_{1} \mathbf{e}_{1}+b_{1}\left(i \mathbf{e}_{1}\right)+a_{2} \mathbf{e}_{2}+b_{2}\left(i \mathbf{e}_{2}\right)+\cdots+a_{n} \mathbf{e}_{n}+b_{n}\left(i \mathbf{e}_{n}\right),
$$

which shows that $\left\{\mathbf{e}_{1}, i \mathbf{e}_{1}, \ldots, \mathbf{e}_{n}, i \mathbf{e}_{n}\right\}$ is a basis for \mathbb{C}^{n} over \mathbb{R}. (Note that this set is not linearly independent over \mathbb{C}.) This basis has $2 n$ elements, which shows that the dimension of V as a vector space over \mathbb{R} is $2 n$.
2. Let V be a vector space and let $W_{1}, W_{2} \subset V$ be finite-dimensional subspaces. Recall from a previous assignment that $W_{1} \cap W_{2}$ and $W_{1}+$ W_{2} are also subspaces of V. Prove that

$$
\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right) .
$$

Hint: begin with a basis B for $W_{1} \cap W_{2}$, and then extend B into a basis B_{1} for W_{1} and a basis B_{2} for W_{2}.

Solution. [20 points] An alternate proof using quotient spaces is given in Theorem 7 on page 10 of Lax's book.

Let $B=\left\{w_{1}, \ldots, w_{k}\right\}$ be a basis for $W_{1} \cap W_{2}$, where $k=\operatorname{dim}\left(W_{1} \cap\right.$ W_{2}). By a result from the lecture, B can be extended to a basis
$B_{1}=\left\{w_{1}, \ldots, w_{k}, v_{1}, \ldots, v_{\ell}\right\}$ for W_{1}, and $\operatorname{dim}\left(W_{1}\right)=k+\ell$. Similarly, B can be extended to a basis $B_{2}\left\{w_{1}, \ldots, w_{k}, u_{1}, \ldots, u_{m}\right\}$ for W_{2}, and $\operatorname{dim}\left(W_{2}\right)=k+m$.

We claim that $B_{1} \cup B_{2}=\left\{w_{1}, \ldots, w_{k}, v_{1}, \ldots, v_{\ell}, u_{1}, \ldots, u_{m}\right\}$ is a basis for $W_{1}+W_{2}$. Once this is proven we will see that

$$
\begin{aligned}
& \operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right) \\
& \quad=(k+\ell)+(k+m)-k=k+\ell+m=\operatorname{dim}\left(W_{1}+W_{2}\right)
\end{aligned}
$$

So we need only check that $B_{1} \cup B_{2}$ is linearly independent and spans $W_{1}+W_{2}$. To see that it is linearly independent, suppose $a_{i}, b_{i}, c_{i} \in K$ are such that

$$
a_{1} w_{1}+\cdots+a_{k} w_{k}+b_{1} v_{1}+\cdots+b_{\ell} v_{\ell}+c_{1} u_{1}+\cdots+c_{m} u_{m}=\mathbf{0} .
$$

Let $w=\sum_{i} a_{i} w_{i}$, and also consider $v=\sum_{i} b_{i} v_{i}$ and $u=\sum_{i} c_{i} u_{i}$. Note that $w \in W_{1} \cap W_{2}, v \in W_{1}$, and $u \in W_{2}$. Moreover, we have $w+v+u=\mathbf{0}$. Thus $u=-(w+v) \in W_{1}$, and expanding this to $u=$ $\sum_{i}\left(-a_{i}\right) w_{i}+\sum_{i}\left(-b_{i}\right) v_{i}$, we recall that since B_{1} is a basis for W_{1}, every element of W_{1} can be written in a unique way as a linear combination of elements of B_{1}. But by the above discussion, $u \in W_{1} \cap W_{2}$ and so u can be written as $u=\sum_{i} a_{i}^{\prime} w_{i}$, which implies that $b_{i}=0$ for all i, and hence $v=0$.

Now we have $\sum_{i} a_{i} w_{i}+\sum_{i} c_{i} u_{i}=\mathbf{0}$, and because B_{2} is a basis, we conclude that $a_{i}=0$ and $c_{i}=0$ for all i. Thus $B_{1} \cup B_{2}$ is linearly independent.

To show that $B_{1} \cup B_{2}$ spans $W_{1}+W_{2}$, choose any element $w \in W_{1}+$ W_{2}, and write $w=v+u$, where $v \in W_{1}$ and $u \in W_{2}$. Then since B_{1} is a basis for W_{1}, there are coefficients a_{i}, b_{i} such that $v=\sum_{i} a_{i} w_{i}+\sum_{i} b_{i} v_{i}$. Similarly there are scalars c_{i}, d_{i} such that $u=\sum_{i} c_{i} w_{i}+\sum_{i} d_{i} u_{i}$. We get

$$
\begin{aligned}
w & =v+u=\left(\sum_{i} a_{i} w_{i}+\sum_{i} b_{i} v_{i}\right)+\left(\sum_{i} c_{i} w_{i}+\sum_{i} d_{i} u_{i}\right) \\
& =\sum_{i}\left(a_{i}+c_{i}\right) w_{i}+\sum_{i} b_{i} v_{i}+\sum_{i} d_{i} u_{i} \in \operatorname{span}\left(B_{1} \cup B_{2}\right),
\end{aligned}
$$

which completes the proof.
3. Let W_{1}, W_{2}, X be subspaces of a vector space V. Is it necessarily true that $\left(W_{1}+W_{2}\right) \cap X=\left(W_{1} \cap X\right)+\left(W_{2} \cap X\right)$? If it is true, prove it; if it is not true, find a counterexample.

Solution. [10 points] No, it is not necessarily true. For example, let $V=\mathbb{R}^{2}$ and consider the subspaces $W_{1}=\{(x, 0) \mid x \in \mathbb{R}\}, W_{2}=$ $\{(0, y) \mid y \in \mathbb{R}\}$, and $X=\{(a, a) \mid a \in \mathbb{R}\}$. Then $W_{1}+W_{2}=V$ and so $\left(W_{1}+W_{2}\right) \cap X=X$, but $W_{1} \cap X=W_{2} \cap X=\{\mathbf{0}\}$ and so the right hand side is the trivial subspace.
4. Let $n \geq 2$, and recall that \mathbb{P}_{n} is the vector space of polynomials with real coefficients and degree at most n. Fix distinct real numbers $t_{1}, t_{2}, t_{3} \in \mathbb{R}$ and let $X=\left\{f \in \mathbb{P}_{n} \mid f\left(t_{1}\right)=f\left(t_{2}\right)=f\left(t_{3}\right)=0\right\}$. Show that X is a subspace of \mathbb{P}_{n}, and write down a basis for \mathbb{P}_{n} / X.

Solution. [10 points] First we show that X is a subspace. Clearly X contains the zero polynomial and so it is non-empty. Suppose $f, g \in X$ and $c \in \mathbb{R}$: then we have

$$
(c f+g)\left(t_{i}\right)=c f\left(t_{i}\right)+g\left(t_{i}\right)=c \cdot 0+0=0
$$

for $i=1,2,3$, and so $c f+g \in X$. Thus X is a subspace.
Now we know from a result in lecture that $\operatorname{dim}\left(\mathbb{P}_{n} / X\right)=\operatorname{dim}\left(\mathbb{P}_{n}\right)-$ $\operatorname{dim}(X)=n+1-\operatorname{dim}(X)$. So we need to determine $\operatorname{dim}(X)$. As on the previous assignment, we notice that $X=\left\{g(x)\left(x-t_{1}\right)\left(x-t_{2}\right)\left(x-t_{3}\right) \mid\right.$ $\left.g \in \mathbb{P}_{n-3}\right\}$, and so $\operatorname{dim}(X)=n-2$. We conclude that $\operatorname{dim}\left(\mathbb{P}_{n} / X\right)=3$, and so $\left\{[1]_{X},[x]_{X},\left[x^{2}\right]_{X}\right\}$ will be a basis for \mathbb{P}_{n} / X if we can show that it is linearly independent. To this end, suppose $a, b, c \in \mathbb{R}$ are such that $a[1]_{X}+b[x]_{X}+c\left[x^{2}\right]_{X}=[\mathbf{0}]_{X}$. This is equivalent to the statement that $a+b x+c x^{2} \in X$, but we recall that any non-zero quadratic polynomial vanishes on at most two points, and so in order to have $f(x)=a+b x+c x^{2} \in X$, which requires f to vanish at three points, we must have $a=b=c=0$. Thus the set is linearly independent, hence it is a basis.
5. With n, \mathbb{P}_{n}, and t_{1}, t_{2}, t_{3} as in the previous problem, define $\ell_{j}(f)=f\left(t_{j}\right)$ for $f \in \mathbb{P}_{n}$ and $j=1,2,3$.
(a) Show that $\ell_{1}, \ell_{2}, \ell_{3}$ are all linear functions on \mathbb{P}_{n}.

Solution. [5 points] We check linearity by observing that for any $f, g \in \mathbb{P}_{n}$ and $c \in \mathbb{R}$, we have

$$
\ell_{j}(c f+g)=(c f+g)\left(t_{j}\right)=c f\left(t_{j}\right)+g\left(t_{j}\right)=c \ell_{j}(f)+\ell_{j}(g) .
$$

(b) Show that $\left\{\ell_{1}, \ell_{2}, \ell_{3}\right\} \subset \mathbb{P}_{n}^{\prime}$ is linearly independent.

Solution. [10 points] Suppose $a, b, c \in \mathbb{R}$ are such that $a \ell_{1}+$ $b \ell_{2}+c \ell_{3}=\mathbf{0}$, the zero functional. Then
$a \ell_{1}(f)+b \ell_{2}(f)+c \ell_{3}(f)=a f\left(t_{1}\right)+b f\left(t_{2}\right)+c f\left(t_{3}\right)=0$ for all $f \in \mathbb{P}_{n}$.
Consider $f(t)=\left(t-t_{1}\right)\left(t-t_{2}\right)$, and note that $f\left(t_{1}\right)=f\left(t_{2}\right)=0$, while $f\left(t_{3}\right) \neq 0$. Thus the above equation implies that $c=0$. Similarly, applying the above equation to $f(t)=\left(t-t_{1}\right)\left(t-t_{3}\right)$ shows that $b=0$, and $f(t)=\left(t-t_{2}\right)\left(t-t_{3}\right)$ shows that $a=0$. We conclude that $a=b=c=0$ whenever $a \ell_{1}+b \ell_{2}+c \ell_{3}=\mathbf{0}$, and so $\left\{\ell_{1}, \ell_{2}, \ell_{3}\right\}$ is linearly independent.
(c) If $n=2$, show that $\left\{\ell_{1}, \ell_{2}, \ell_{3}\right\}$ is a basis for \mathbb{P}_{2}^{\prime}.

Solution. [5 points] We just saw that the set is linearly independent, and we know from Theorem 5.10 in the notes that $\operatorname{dim}\left(\mathbb{P}_{2}^{\prime}\right)=\operatorname{dim}\left(\mathbb{P}_{2}\right)=3$. Thus any linearly independent set with 3 elements is a basis.

