Due $4 p m$ Wednesday, October 9. You will be graded not only on the correctness of your answers but also on the clarity and completeness of your communication. Write in complete sentences.

1. Construct two 2×2 matrices A and B such that $A B=0$ but $B A \neq 0$.

Solution. [10 points] One example that works is $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $B=\left(\begin{array}{lll}1 & 0 \\ 0 & 0\end{array}\right)$. There are many others.
2. Let $D \in \mathbb{M}_{n \times n}(K)$ be a diagonal matrix - that is, $D_{i j}=0$ whenever $i \neq j$. Write $d_{i}=D_{i i}$ for the i th diagonal entry of D, and let $A \in$ $\mathbb{M}_{n \times n}(K)$. Show that $D A$ is obtained from A by muliplying the i th row of A by d_{i}, and $A D$ is obtained from A by multiplying the j th column of A by d_{j}.

Solution. [10 points] A straightforward computation gives

$$
(D A)_{i j}=\sum_{k=1}^{n} D_{i k} A_{k j}=D_{i i} A_{i j}=d_{i} A_{i j},
$$

where the second equality follows since $D_{i k}=0$ whenever $k \neq i$. The i th row of $D A$ contains the entries $(D A)_{i j}$ for $1 \leq j \leq n$, and the above computation shows that these entries are obtained by multiplying the entries $A_{i j}$ by d_{i}, which proves the claim about rows.

For columns we also see that

$$
(A D)_{i j}=\sum_{k=1}^{n} A_{i k} D_{k j}=A_{i j} d_{j},
$$

since $D_{k j}=0$ when $k=j$ and is equal to d_{j} when $k=j$. The j th column of $A D$ contains the entries $(A D)_{i j}$ for $1 \leq i \leq n$, and we see that these are obtained by multiplying the entries $A_{i j}$ by d_{j}.
3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $T(x, y)=(3 x-y, 2 x+6 y)$.
(a) Write the matrix of T relative to the standard basis on \mathbb{R}^{2}.

Solution. [10 points] We have $T \mathbf{e}_{1}=T(1,0)=(3,2)=3 \mathbf{e}_{1}+2 \mathbf{e}_{2}$, so the first column of the matrix is $\binom{3}{2}$. For the second column, we see that $T \mathbf{e}_{2}=T(0,1)=(-1,6)=-\mathbf{e}_{1}+6 \mathbf{e}_{2}$, so the second column is $\binom{-1}{6}$, and the matrix is $\left(\begin{array}{cc}3 & -1 \\ 2 & 6\end{array}\right)$,
(b) Let $v_{1}=\binom{1}{-1}$ and $v_{2}=\binom{1}{-2}$, and write the matrix of T relative to the basis $\left\{v_{1}, v_{2}\right\}$.

Solution. [10 points] To find the first column we must write $T\left(v_{1}\right)$ as a linear combination of v_{1} and v_{2}. We see that

$$
T\left(v_{1}\right)=T\left({ }_{-1}^{1}\right)=\binom{4}{-4}=4 v_{1}+0 v_{2}
$$

so the first column of the matrix is $\binom{4}{0}$. Similarly,

$$
T\left(v_{2}\right)=T\binom{1}{-2}=\binom{5}{-10}=0 v_{1}+5 v_{2},
$$

so the second column is $\binom{0}{5}$. Thus the matrix of T relative to $\left\{v_{1}, v_{2}\right\}$ is the diagonal matrix

$$
\left(\begin{array}{ll}
4 & 0 \\
0 & 5
\end{array}\right) .
$$

4. Consider the bases $\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$ and $\left\{g_{1}, g_{2}, g_{3}\right\}$ for \mathbb{P}_{3} and \mathbb{P}_{2}, respectively, where

$$
\begin{array}{ll}
f_{1}(x)=2 x, & g_{1}(x)=1-x \\
f_{2}(x)=1-x^{2}, & g_{2}(x)=1+x^{2} \\
f_{3}(x)=2 x+x^{2}, & g_{3}(x)=x-x^{2} \\
f_{4}(x)=x^{2}+2 x^{3} . &
\end{array}
$$

Let $T: \mathbb{P}_{3} \rightarrow \mathbb{P}_{2}$ be the linear map given by differentiation. For $1 \leq$ $j \leq 4$, write $T f_{j}$ as a linear combination of g_{1}, g_{2}, g_{3}, and use this to write the matrix of T relative to the bases given above.

Solution. [10 points] The first step is to solve the linear equations generated by equating the coefficients of both sides of

$$
\begin{aligned}
f_{i}^{\prime}(x) & =a_{i}(1-x)+b_{i}\left(1+x^{2}\right)+c_{i}\left(x-x^{2}\right) \\
& =\left(a_{i}+b_{i}\right)+\left(c_{i}-a_{i}\right) x+\left(b_{i}-c_{i}\right) x^{2},
\end{aligned}
$$

which for $i=1,2,3,4$ yields

$$
\begin{aligned}
& f_{1}^{\prime}(x)=2=\left(a_{1}+b_{1}\right)+\left(c_{1}-a_{1}\right) x+\left(b_{1}-c_{1}\right) x^{2} \\
& f_{2}^{\prime}(x)=-2 x=\left(a_{2}+b_{2}\right)+\left(c_{2}-a_{2}\right) x+\left(b_{2}-c_{2}\right) x^{2} \\
& f_{3}^{\prime}(x)=2+2 x=\left(a_{3}+b_{3}\right)+\left(c_{3}-a_{3}\right) x+\left(b_{3}-c_{3}\right) x^{2} \\
& f_{4}^{\prime}(x)=2 x+6 x^{2}=\left(a_{4}+b_{4}\right)+\left(c_{4}-a_{4}\right) x+\left(b_{4}-c_{4}\right) x^{2} .
\end{aligned}
$$

The first has solution $a_{1}=b_{1}=c_{1}=1$. The second has solution $a_{2}=1, b_{2}=c_{2}=-1$. The third has solution $a_{3}=0, b_{3}=c_{3}=2$. The fourth has solution $a_{4}=-4, b_{4}=4, c_{4}=-2$, and we conclude that

$$
\begin{aligned}
& T f_{1}=g_{1}+g_{2}+g_{3}, \\
& T f_{2}=g_{1}-g_{2}-g_{3}, \\
& T f_{3}=2 g_{2}+2 g_{3} \\
& T f_{4}=-4 g_{1}+4 g_{2}-2 g_{3} .
\end{aligned}
$$

Thus relative to the bases given by f_{j} and g_{i}, the matrix of T is

$$
\left(\begin{array}{cccc}
1 & 1 & 0 & -4 \\
1 & -1 & 2 & 4 \\
1 & -1 & 2 & -2
\end{array}\right)
$$

5. Let V, W, X be vector spaces and let $S \in \mathbb{L}(V, W), T \in \mathbb{L}(W, X)$, so the composition $T S$ is in $\mathbb{L}(V, X)$.
(a) Prove that if $T S$ is $1-1$, then S is $1-1$. Must T be 1-1?

Solution. [7 points] If S is not 1-1, then there are $v_{1} \neq v_{2} \in V$ such that $S\left(v_{1}\right)=S\left(v_{2}\right)$, and hence $T S\left(v_{1}\right)=T S\left(v_{2}\right)$, which shows that $T S$ is not 1-1. On the other hand, it is not necessary for T to be 1-1: to see this, take $V=X=\mathbb{R}$ and $W=\mathbb{R}^{2}$, with $S(v)=(v, 0)$ and $T(x, y)=x$. We see that $T S(v)=T(v, 0)=v$, so $T S$ is 1-1, but T is not 1-1.
(b) Prove that if $T S$ is onto, then T is onto. Must S be onto?

Solution. [7 points] If T is not onto, then there is $x \in X$ such that $T w \neq x$ for all $w \in W$. In particular, this implies that $T S v \neq x$ for all $v \in V$, since $S v \in W$. Thus $T S$ is not onto. On the other hand, it is not necessary for S to be onto. This follows from the same example as in the previous part, where $T S: \mathbb{R} \rightarrow \mathbb{R}$ is onto (indeed, it is the identity map), but $S: \mathbb{R} \rightarrow \mathbb{R}^{2}$ is not onto.
(c) Prove that if T and S are isomorphisms, then $T S$ is an isomorphism.

Solution. [6 points] The composition of linear maps is linear, so $T S$ is linear. We show that it is $1-1$ and onto. Given any $v_{1} \neq v_{2} \in V$, we have $S v_{1} \neq S v_{2} \in W$, because S is $1-1$, and so $T S v_{1} \neq T S v_{2} \in X$, because T is 1-1. This shows that $T S$ is 1-1. To see that $T S$ is onto, pick any $x \in X$ and use the fact that T is onto to find $w \in W$ such that $T w=x$. Now because S is onto, there is $v \in V$ such that $S v=w$, and therefore $T S v=T w=x$. Thus $T S$ is onto.

