
Math 4377/6308 Advanced Linear Algebra I

Dr. Vaughn Climenhaga, PGH 651A

Fall 2013

HOMEWORK 7 – solutions

Due 4pm Wednesday, October 16. You will be graded not only on
the correctness of your answers but also on the clarity and com-
pleteness of your communication. Write in complete sentences.

1. Let β = {f1, f2, f3} and γ = {g1, g2, g3} be the bases for P2 given by

f1(x) = 2 + 2x− x2 g1(x) = 2 + x

f2(x) = 1 + x g2(x) = −1 + x+ 2x2

f3(x) = 1 + x2 g3(x) = 1 + x+ x2

Let α = {e1, e2, e3} be the standard basis for P2, with e1(x) = 1,
e2(x) = x, and e3(x) = x2.
(a) Compute the change-of-coordinates matrix Iγβ that turns β-coordinates

into γ-coordinates, either directly or using the following steps.
(i) Find Iαβ and Iαγ . (This requires almost no computation.)

(ii) Draw a commutative diagram showing that Iγβ is the matrix

satisfying Iαγ I
γ
β = Iαβ .

(iii) Recall from your introductory linear algebra course that the
matrix equation AB = C can be solved for B by row reduc-
ing the augmented matrix [A | C] to the form [I | B].

(iv) Keeping this in mind, row reduce [Iαγ | Iαβ ] to obtain [I | Iγβ ].

Once you have computed Iγβ , verify directly that Iαγ I
γ
β = Iαβ .

Solution. [15 points] To do this directly, recall that J = Iγβ is
the matrix whose coefficients are determined by

f1 = J11g1 + J21g2 + J31g3,

f2 = J12g1 + J22g2 + J32g3,

f3 = J13g1 + J23g2 + J33g3.

These equations become

2 + 2x− x2 = J11(2 + x) + J21(−1 + x+ 2x2) + J31(1 + x+ x2),

1 + x = J12(2 + x) + J22(−1 + x+ 2x2) + J32(1 + x+ x2),

1 + x2 = J13(2 + x) + J23(−1 + x+ 2x2) + J33(1 + x+ x2).



Math 4377/6308 Homework 7 – solutions Page 2 of 6

Comparing coefficients in the first of these gives

2 = 2J11 − J21 + J31 (constant term)

2 = J11 + J21 + J31 (linear term)

−1 = 2J21 + J31 (quadratic term)

which can be solved. One can find the remaining entries of J sim-
ilarly, by comparing coefficients in the second and third equations
above. Instead of giving details we describe the alternate solution
sketched in the problem, which amounts to carrying out the same
computations but in a more organised way.

First, note that the columns of Iαβ are the coordinate representa-
tions of f1, f2, f3 relative to the standard basis α, which are easy
to determine because they are given by the coefficients of the poly-
nomials. We have

[f1]α =

 2
2
−1

 , [f2]α =

1
1
0

 , [f3]α =

1
0
1

 , ⇒ Iαβ =

 2 1 1
2 1 0
−1 0 1

 .

Similarly, we get

Iαγ =

2 −1 1
1 1 1
0 2 1

 .

One possible commutative diagram relating the various change-of-
coordinates matrices is

Kn(α)

Iα

$$

Kn(β)

Iαβ

ss

Iβ

zz

Iγβ

zz
Kn(γ)

Iαγ

dd

Iγ
��

P2

where we have written Kn(α) to denote the vector space Kn inter-
preted as coordinate representations relative to α, and similarly
for Kn(β) and Kn(γ). This diagram illustrates that Iαβ = Iαγ I

γ
β .

Thus finding J = Iγβ amounts to solving the matrix equation AJ =
B, where A = Iαγ and B = Iαβ . Writing J in column form as
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J = [x1x2 · · · xn], where xj ∈ Kn, and writing B similarly as
B = [y1 · · · yn], we see that this amounts to solving the equations
Axj = yj for 1 ≤ j ≤ n. Each of these can be solved by row
reducing the augmented matrix [A | yj] to get [I | xj]. (Note
that we end up with the identity on the left because A = Iαγ is
invertible.)

We use the same sequence of row reductions for each j (because
the left part of the matrix does not depend on j), and so we can
write all n of these processes at once as

[A | B] = [A | y1 · · · yn]→ [I | x1 · · ·xn] = [I | J ],

where the arrow signifies row reduction. Thus in the present prob-
lem, to find J it suffices to row reduce

[Iαγ | Iαβ ] =

2 −1 1 2 1 1
1 1 1 2 1 0
0 2 1 −1 0 1

→
1 0 0 6 2 −3

0 1 0 3 1 −2
0 0 1 −7 −2 5


where we have omitted the intermediate steps in the row reduction.
We conclude that

J = Iγβ =

 6 2 −3
3 1 −2
−7 −2 5

 ,

and verify that

Iαγ I
γ
β =

2 −1 1
1 1 1
0 2 1

 6 2 −3
3 1 −2
−7 −2 5

 =

 2 1 1
2 1 0
−1 0 1

 = Iαβ .

(b) Let p(x) = x2+x and find [p]α. Compute Iβα = (Iαβ )−1, and use this
together with Iγβ to find [p]β and [p]γ. Verify that Iαγ [p]γ = [p]α.

Solution. [10 points] We can invert Iαβ by carrying out the row

reduction [Iαβ | I]→ [I | (Iαβ )−1], which yields 2 1 1 1 0 0
2 1 0 0 1 0
−1 0 1 0 0 1

→
1 0 0 1 −1 −1

0 1 0 −2 3 2
0 0 1 1 −1 0.


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Now we see that [p]α =
(

0
1
1

)
, and so

[p]β = Iβα [p]α =

 1 −1 −1
−2 3 2
1 −1 0

0
1
1

 =

−2
5
−1

 .

This allows us to compute [p]γ by

[p]γ = Iγβ [p]β =

 6 2 −3
3 1 −2
−7 −2 5

−2
5
−1

 =

 1
1
−1

 .

Finally, we check that

Iαγ [p]γ =

2 −1 1
1 1 1
0 2 1

 1
1
−1

 =

0
1
1

 = [p]α.

(c) Let T ∈ L(P2) be the differentiation operator, and find [T ]α. Use
Iβα and Iαβ (which you computed in the previous parts) to find [T ]β.

Solution. [10 points] We have Te1 = 0, Te2 = e1, and Te3 =
2e2, so

[T ]α =

0 1 0
0 0 2
0 0 0

 .

Thus

[T ]β = Iβα [T ]αI
α
β

=

 1 −1 −1
−2 3 2
1 −1 0

0 1 0
0 0 2
0 0 0

 2 1 1
2 1 0
−1 0 1


=

0 1 −2
0 −2 6
0 1 −2

 2 1 1
2 1 0
−1 0 1


=

 4 1 −2
−10 −2 6

4 1 −2


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2. Let A,B,C be invertible n× n matrices.
(a) Show that AB and BA are always conjugate.

Solution. [5 points] It suffices to observe that A(BA)A−1 = AB,
so that AB can be obtained from BA via a conjugation by A.

(b) Use this to show that ABC and CAB are always conjugate.

Solution. [5 points] Similarly, C(ABC)C−1 = CAB.

(c) Give an example of invertible matrices A,B,C such that ABC and
BAC are not conjugate. Hint: Choose A,B such that AB 6= BA,
and then let C = (AB)−1.

Solution. [5 points] Let A = ( 0 1
1 0 ) and B = ( 1 1

0 1 ). Then AB =
( 0 1
1 1 ) and BA = ( 1 1

1 0 ). Let C = (AB)−1 = ( −1 1
1 0 ), then ABC =

( 1 0
0 1 ) and BAC = ( 1 1

1 0 ) ( −1 1
1 0 ) = ( 0 1

−1 1 ), which is not conjugate to
ABC = I because for any invertible J we have JIJ−1 = JJ−1 = I,
so the only matrix conjugate to the identity is the identity itself.

3. Recall that a matrix A ∈ Mn×n is strictly upper triangular if Aij = 0
whenever i ≥ j. Show that every strictly upper triangular matrix
is nilpotent – that is, there exists k such that Ak = 0. Hint: use
induction to show that for every k = 1, 2, 3, . . . , we have (Ak)ij = 0
whenever j ≤ i+ k − 1.

Solution. [10 points] As suggested, we use induction. For k = 1
the induction claim is exactly the hypothesis that A is strictly upper
triangular. Now suppose Ak has the property that (Ak)ij = 0 whenever
j ≤ i + k − 1. We prove the analogous property for Ak+1: given any
i, j with j ≤ i+ (k + 1)− 1 = i+ k, we have

(Ak+1)ij =
n∑
`=1

(Ak)i`A`j.
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If ` ≥ j, then the fact that A is strictly upper triangular implies that
A`j = 0, and so the terms with ` ≥ j in the above sum vanish, and we
get

(Ak+1)ij =

j−1∑
`=1

(Ak)i`A`j.

But for ` ≤ j − 1 we use j ≤ i+ k to deduce that ` ≤ i+ k − 1, which
by the inductive hypothesis implies that (Ak)i` = 0, and hence these
terms all vanish as well. Thus (Ak+1)ij = 0 whenever j ≤ i + k, and
by induction we have the result for all k = 1, 2, 3, . . . .

In particular, with k = n we see that j ≤ i+n−1 for every 1 ≤ j ≤ n
and 1 ≤ i ≤ n, and thus (An)ij = 0 for all such i, j, meaning that An

is the zero matrix.

4. Suppose T ∈ L(V ) satisfies the equation T 2 = T . Prove that V =
RT ⊕ NT . Hint: this requires showing that V = RT + NT , and that
RT ∩NT = {0}. To show the first, it may help to prove that v−T (v) ∈
NT for all v ∈ V .

Solution. [10 points] First we show that V = RT +NT . That is, for
every v ∈ V we produce w ∈ RT and x ∈ NT such that v = w + x.
Let w = T (v), then w ∈ RT . Let x = v − w, then v = w + x, and it
remains to show that x ∈ NT . To this end, observe that

Tx = T (v − w) = Tv − Tw = Tv − T (Tv) = Tv − T 2v = 0

where the last equality uses the fact that T = T 2. Thus x ∈ NT and
we have shown that V = RT +NT .

It remains to show that RT ∩ NT = {0}. To this end, suppose
w ∈ RT ∩ NT . Because w ∈ RT , we have w = Tv for some v ∈ V .
Then Tw = T (Tv) = Tv = w, where the second equality uses the fact
that T 2 = T . But w ∈ NT implies that Tw = 0, and hence w = 0.


