HOMEWORK 7

Due $4 p m$ Wednesday, October 16. You will be graded not only on the correctness of your answers but also on the clarity and completeness of your communication. Write in complete sentences.

1. Let $\beta=\left\{f_{1}, f_{2}, f_{3}\right\}$ and $\gamma=\left\{g_{1}, g_{2}, g_{3}\right\}$ be the bases for \mathbb{P}_{2} given by

$$
\begin{array}{ll}
f_{1}(x)=2+2 x-x^{2} & g_{1}(x)=2+x \\
f_{2}(x)=1+x & g_{2}(x)=-1+x+2 x^{2} \\
f_{3}(x)=1+x^{2} & g_{3}(x)=1+x+x^{2}
\end{array}
$$

Let $\alpha=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ be the standard basis for \mathbb{P}_{2}, with $\mathbf{e}_{1}(x)=1$, $\mathbf{e}_{2}(x)=x$, and $\mathbf{e}_{3}(x)=x^{2}$.
(a) Compute the change-of-coordinates matrix I_{β}^{γ} that turns β-coordinates into γ-coordinates, either directly or using the following steps.
(i) Find I_{β}^{α} and I_{γ}^{α}. (This requires almost no computation.)
(ii) Draw a commutative diagram showing that I_{β}^{γ} is the matrix satisfying $I_{\gamma}^{\alpha} I_{\beta}^{\gamma}=I_{\beta}^{\alpha}$.
(iii) Recall from your introductory linear algebra course that the matrix equation $A B=C$ can be solved for B by row reducing the augmented matrix $[A \mid C]$ to the form $[I \mid B]$.
(iv) Keeping this in mind, row reduce $\left[I_{\gamma}^{\alpha} \mid I_{\beta}^{\alpha}\right]$ to obtain $\left[I \mid I_{\beta}^{\gamma}\right]$. Once you have computed I_{β}^{γ}, verify directly that $I_{\gamma}^{\alpha} I_{\beta}^{\gamma}=I_{\beta}^{\alpha}$.
(b) Let $p(x)=x^{2}+x$ and find $[p]_{\alpha}$. Compute $I_{\alpha}^{\beta}=\left(I_{\beta}^{\alpha}\right)^{-1}$, and use this together with I_{β}^{γ} to find $[p]_{\beta}$ and $[p]_{\gamma}$. Verify that $I_{\gamma}^{\alpha}[p]_{\gamma}=[p]_{\alpha}$.
(c) Let $T \in \mathbb{L}\left(\mathbb{P}_{2}\right)$ be the differentiation operator, and find $[T]_{\alpha}$. Use I_{α}^{β} and I_{β}^{α} (which you computed in the previous parts) to find $[T]_{\beta}$.
2. Let A, B, C be invertible $n \times n$ matrices.
(a) Show that $A B$ and $B A$ are always conjugate.
(b) Use this to show that $A B C$ and $C A B$ are always conjugate.
(c) Give an example of invertible matrices A, B, C such that $A B C$ and $B A C$ are not conjugate. Hint: Choose A, B such that $A B \neq B A$, and then let $C=(A B)^{-1}$.
3. Recall that a matrix $A \in \mathbb{M}_{n \times n}$ is strictly upper triangular if $A^{i j}=0$ whenever $i \geq j$. Show that every strictly upper triangular matrix is nilpotent - that is, there exists k such that $A^{k}=0$. Hint: use
induction to show that for every $k=1,2,3, \ldots$, we have $\left(A^{k}\right)_{i j}=0$ whenever $j \leq i+k-1$.
4. Suppose $T \in \mathbb{L}(V)$ satisfies the equation $T^{2}=T$. Prove that $V=$ $R_{T} \oplus N_{T}$. Hint: this requires showing that $V=R_{T}+N_{T}$, and that $R_{T} \cap N_{T}=\{\mathbf{0}\}$. To show the first, it may help to prove that $v-T(v) \in$ N_{T} for all $v \in V$.

