HOMEWORK 8

Due 4pm Wednesday, October 23. You will be graded not only on the correctness of your answers but also on the clarity and completeness of your communication. Write in complete sentences.

- **1.** Let $T \in \mathbb{L}(V)$ be nilpotent and let $P \in \mathbb{L}(V)$ be a projection.
 - (a) Show that 0 is an eigenvalue of T, and that it is the only eigenvalue.

Solution. [10 points] First observe that if $v \in V$ is any non-zero vector, then by nilpotence there is k such that $T^k v = \mathbf{0}$. Assume that k is the smallest such value – that is, $T^{k-1}v \neq \mathbf{0}$ and $T^k v = \mathbf{0}$. Then $w = T^{k-1}v$ has the property that $w \neq \mathbf{0}$ and $Tw = \mathbf{0} = 0w$, thus w is an eigenvector for the eigenvalue 0, so 0 is an eigenvalue of T.

Now suppose $\lambda \neq 0$ is an eigenvalue of T. Then there is $v \in V$ such that $v \neq \mathbf{0}$ and $Tv = \lambda v$. In particular, for every $k \in \mathbb{N}$ we have $T^k v = \lambda^k v \neq \mathbf{0}$, which contradicts the definition of a nilpotent operator. It follows that T has no non-zero eigenvalues.

(b) Show that the only possible eigenvalues of P are 0 and 1. Show that if P is not the identity or the zero transformation, then 0 and 1 are both eigenvalues.

Solution. [10 points] Suppose λ is an eigenvalue of P, and let v be an eigenvector for λ . Then because $P^2 = P$, we see that $P^2v = Pv$, and because v is an eigenvector, we have $P^2v = \lambda^2 v$ and $Pv = \lambda v$. It follows that $\lambda^2 v = \lambda v$, so $(\lambda^2 - \lambda)v = \mathbf{0}$. Because $v \neq \mathbf{0}$, this implies that $\lambda^2 - \lambda = \lambda(\lambda - 1)0$, so $\lambda = 0$ or $\lambda = 1$. Thus every eigenvalue is equal to 0 or 1.

Note that every non-trivial vector in N_P is an eigenvector for 0, and so 0 is an eigenvalue if and only if N_P is non-trivial. Similarly, if $w \in R_P$, then there is $v \in V$ such that Pv = w, and hence $Pw = P(Pv) = P^2v = Pv = w$ using the fact that $P^2 = P$. Thus every element of R_P is an eigenvector for 1, and so 1 is an eigenvalue if and only if R_P is non-trivial. Recall that for a projection, $V = R_P \oplus N_P$. If $P \neq \mathbf{0}$ then $N_P \neq V$, so R_P is non-trivial and 1 is an eigenvalue. The previous paragraph shows that if $R_P = V$, then P = I, so if P is not the identity then $R_P \neq V$ and N_P is non-trivial, so 0 is an eigenvalue.

- **2.** Consider the matrix $A = \begin{pmatrix} -4 & -6 & 3 \\ 2 & 4 & -2 \\ -2 & -2 & 1 \end{pmatrix}$
 - (a) Show that $\lambda_1 = 0$, $\lambda_2 = -1$, and $\lambda'_3 = 2$ are eigenvalues of A by finding eigenvectors $v_1, v_2, v_3 \in \mathbb{R}^3$ such that $Av_j = \lambda_j v_j$.

Solution. [10 points] Note that v_j is an eigenvector for λ_j if and only if it is a non-trivial solution to the homogeneous linear equation $(A - \lambda_j I)v_j = \mathbf{0}$. Thus we can find v_1 by row reducing A, we can find v_2 by row reducing A - (-1)I = A + I, and we can find v_3 by row reducing A - 2I. These row reductions proceed as shown (omitting several intermediate steps):

$$A = \begin{pmatrix} -4 & -6 & 3\\ 2 & 4 & -2\\ -2 & -2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 2 & -1\\ 2 & 4 & -2\\ 0 & 2 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 2 & -1\\ 1 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}$$
$$A + I = \begin{pmatrix} -3 & -6 & 3\\ 2 & 5 & -2\\ -2 & -2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1\\ 2 & 5 & -2\\ 1 & 1 & -1 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 1 & 2 & -1\\ 0 & 1 & 0\\ 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1\\ 0 & 1 & 0\\ 0 & 0 & 0 \end{pmatrix}$$
$$A - 2I = \begin{pmatrix} -6 & -6 & 3\\ 2 & 2 & -2\\ -2 & -2 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 2 & -1\\ 1 & 1 & -1\\ 2 & 2 & 1 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 0 & 0 & 1\\ 1 & 1 & -1\\ 0 & 0 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 0 & 1\\ 1 & 1 & 0\\ 0 & 0 & 0 \end{pmatrix}.$$

We conclude that $Av_1 = \mathbf{0}$ has the non-trivial solution $v_1 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$, that $Av_2 = -v_2$ has the non-trivial solution $v_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, and $Av_3 = 2v_3$ has the non-trivial solution $v_3 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$. Note that we could replace v_j with av_j for any scalar $a \neq 0$ and still obtain an eigenvector.

(b) Let $Q = [v_1 | v_2 | v_3] \in \mathbb{M}_{3 \times 3}$ be the matrix whose column vectors are the eigenvectors v_j . Compute $Q^{-1}AQ$, and verify that this is a diagonal matrix whose diagonal entries are the eigenvalues of A.

Solution. [10 points] We start by computing Q^{-1} , by row reducing [Q|I] to $[I|Q^{-1}]$:

$$\begin{split} [Q|I] &= \begin{pmatrix} 0 & 1 & 1 & | & 1 & 0 & 0 \\ 1 & 0 & -1 & | & 0 & 1 & 0 \\ 2 & 1 & 0 & | & 0 & 0 & 1 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & -1 & | & 0 & 1 & 0 \\ 0 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & 2 & | & 0 & -2 & 1 \end{pmatrix} \\ \to \begin{pmatrix} 1 & 0 & -1 & | & 0 & 1 & 0 \\ 0 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 0 & 1 & | & -1 & -2 & 1 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 0 & | & -1 & -1 & 1 \\ 0 & 1 & 0 & | & 2 & 2 & -1 \\ 0 & 0 & 1 & | & -1 & -2 & 1 \end{pmatrix} \end{split}$$

Now we have

$$Q^{-1}AQ = \begin{pmatrix} -1 & -1 & 1 \\ 2 & 2 & -1 \\ -1 & -2 & 1 \end{pmatrix} \begin{pmatrix} -4 & -6 & 3 \\ 2 & 4 & -2 \\ -2 & -2 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 2 & 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} -1 & -1 & 1 \\ 2 & 2 & -1 \\ -1 & -2 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 & 2 \\ 0 & 0 & -2 \\ 0 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Notice that the columns of AQ are scalar multiples of the columns of Q, and that the ratios between them are the eigenvalues. This is because the columns of Q were chosen to be eigenvectors of A.

3. Let x_n be the sequence of integers defined by $x_0 = x_1 = x_2 = 1$ and the recursive relationship

$$x_n = x_{n-1} + 2x_{n-2} - x_{n-3}.$$

Write down a 3×3 matrix A whose powers can be used to compute x_n , and explain how x_n can be obtained from A^n . *Hint: Let* $v_n \in \mathbb{R}^3$ *be the*

Homework 8

vector with components x_n, x_{n-1}, x_{n-2} , and find a relationship between v_n and v_{n-1} .

Solution. [10 points] As suggested, let $v_n = \begin{pmatrix} x_n \\ x_{n-1} \\ x_{n-2} \end{pmatrix}$ for $n \ge 2$. Then $v_{n-1} = \begin{pmatrix} x_{n-1} \\ x_{n-2} \\ x_{n-3} \end{pmatrix}$, and to express v_n in terms of v_{n-1} we need to use the relationship $x_n = x_{n-1} + 2x_{n-2} - x_{n-3}$ to get

$$v_n = \begin{pmatrix} x_{n-1} + 2x_{n-2} - x_{n-3} \\ x_{n-1} \\ x_{n-2} \end{pmatrix} = \begin{pmatrix} 1 & 2 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_{n-1} \\ x_{n-2} \\ x_{n-3} \end{pmatrix}$$

Note that x_n is the first component of v_n , and that with $A = \begin{pmatrix} 1 & 2 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$, the relationship $v_n = Av_{n-1}$ holds for all $n \ge 3$. Thus we have

$$v_n = A^{n-2}v_2 = A^{n-2} \begin{pmatrix} 1\\1\\1 \end{pmatrix}.$$

In particular, x_n is the sum of the entries in the first row of A^{n-2} .

4. Use the formula for determinant of a 2×2 matrix to prove that det(AB) = det(A) det(B) for any $A, B \in \mathbb{M}_{2 \times 2}$.

Solution. [10 points] Consider the 2×2 matrices $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $B = \begin{pmatrix} w & x \\ y & z \end{pmatrix}$. On the one hand we have

$$det(A) det(B) = det \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} w & x \\ y & z \end{pmatrix}$$
$$= (ad - bc)(wz - xy)$$
$$= adwz - bcwz - adxy + bcxy.$$

On the other hand we have

$$det(AB) = det \begin{pmatrix} aw + by & ax + bz \\ cw + dy & cx + dz \end{pmatrix}$$
$$= (aw + by)(cx + dz) - (ax + bz)(cw + dy)$$
$$= (awcx + bycx + awdz + bydz)$$
$$- (axcw + bzcw + axdy + bzdy)$$
$$= bycx + axdz - bzcw - axdy,$$

and we see that the two expressions are equal.

- 5. Given each of the following sets of four points in \mathbb{R}^2 , compute the area of the parallelogram with vertices at those four points.
 - (a) (0,0), (2,1), (1,1), and (3,2)
 - (b) (0,0), (3,2), (2,4), and (-1,2)
 - (c) (1,1), (2,2), (0,3), and (-1,2)

Solution. [10 points]

- (a) Let $v = \binom{2}{1}$ and $w = \binom{1}{1}$, then the vertices are 0, v, w, and v + w, so the area of the parallelogram is det $\binom{v w}{1} = \det \binom{2}{1} \binom{1}{1} = 2 \cdot 1 1 \cdot 1 = 1$.
- (b) Let $v = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ and $w = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$, then the vertices are 0, v, w, and v + w, so the area of the parallelogram is det $\begin{pmatrix} v & w \end{pmatrix} = \det \begin{pmatrix} 3 & -1 \\ 2 & 2 \end{pmatrix} = 3 \cdot 2 (-1) \cdot 2 = 8.$
- (c) Let $a = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, and $w = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$: then then vertices of the parallelogram are a, a+v, a+w, and a+v+w, so it has the same area as the paralellogram with vertices 0, v, w, and v+w, which is given by det $\begin{pmatrix} v & w \end{pmatrix} = \det \begin{pmatrix} 1 & -2 \\ 1 & 1 \end{pmatrix} = 1 \cdot 1 (-2) \cdot 1 = 3$.