HOMEWORK 8

Due 4 pm Wednesday, October 23. You will be graded not only on the correctness of your answers but also on the clarity and completeness of your communication. Write in complete sentences.

1. Let $T \in \mathbb{L}(V)$ be nilpotent and let $P \in \mathbb{L}(V)$ be a projection.
(a) Show that 0 is an eigenvalue of T, and that it is the only eigenvalue.

Solution. [10 points] First observe that if $v \in V$ is any non-zero vector, then by nilpotence there is k such that $T^{k} v=\mathbf{0}$. Assume that k is the smallest such value - that is, $T^{k-1} v \neq \mathbf{0}$ and $T^{k} v=\mathbf{0}$. Then $w=T^{k-1} v$ has the property that $w \neq \mathbf{0}$ and $T w=\mathbf{0}=0 w$, thus w is an eigenvector for the eigenvalue 0 , so 0 is an eigenvalue of T.

Now suppose $\lambda \neq 0$ is an eigenvalue of T. Then there is $v \in V$ such that $v \neq \mathbf{0}$ and $T v=\lambda v$. In particular, for every $k \in \mathbb{N}$ we have $T^{k} v=\lambda^{k} v \neq 0$, which contradicts the definition of a nilpotent operator. It follows that T has no non-zero eigenvalues.
(b) Show that the only possible eigenvalues of P are 0 and 1 . Show that if P is not the identity or the zero transformation, then 0 and 1 are both eigenvalues.

Solution. [10 points] Suppose λ is an eigenvalue of P, and let v be an eigenvector for λ. Then because $P^{2}=P$, we see that $P^{2} v=P v$, and because v is an eigenvector, we have $P^{2} v=\lambda^{2} v$ and $P v=\lambda v$. It follows that $\lambda^{2} v=\lambda v$, so $\left(\lambda^{2}-\lambda\right) v=\mathbf{0}$. Because $v \neq 0$, this implies that $\lambda^{2}-\lambda=\lambda(\lambda-1) 0$, so $\lambda=0$ or $\lambda=1$. Thus every eigenvalue is equal to 0 or 1 .

Note that every non-trivial vector in N_{P} is an eigenvector for 0 , and so 0 is an eigenvalue if and only if N_{P} is non-trivial. Similarly, if $w \in R_{P}$, then there is $v \in V$ such that $P v=w$, and hence $P w=P(P v)=P^{2} v=P v=w$ using the fact that $P^{2}=P$. Thus every element of R_{P} is an eigenvector for 1 , and so 1 is an eigenvalue if and only if R_{P} is non-trivial.

Recall that for a projection, $V=R_{P} \oplus N_{P}$. If $P \neq \mathbf{0}$ then $N_{P} \neq V$, so R_{P} is non-trivial and 1 is an eigenvalue. The previous paragraph shows that if $R_{P}=V$, then $P=I$, so if P is not the identity then $R_{P} \neq V$ and N_{P} is non-trivial, so 0 is an eigenvalue.
2. Consider the matrix $A=\left(\begin{array}{ccc}-4 & -6 & 3 \\ 2 & 4 & -2 \\ -2 & -2 & 1\end{array}\right)$
(a) Show that $\lambda_{1}=0, \lambda_{2}=-1$, and $\lambda_{3}=2$ are eigenvalues of A by finding eigenvectors $v_{1}, v_{2}, v_{3} \in \mathbb{R}^{3}$ such that $A v_{j}=\lambda_{j} v_{j}$.

Solution. [10 points] Note that v_{j} is an eigenvector for λ_{j} if and only if it is a non-trivial solution to the homogeneous linear equation $\left(A-\lambda_{j} I\right) v_{j}=\mathbf{0}$. Thus we can find v_{1} by row reducing A, we can find v_{2} by row reducing $A-(-1) I=A+I$, and we can find v_{3} by row reducing $A-2 I$. These row reductions proceed as shown (omitting several intermediate steps):

$$
\begin{aligned}
A=\left(\begin{array}{ccc}
-4 & -6 & 3 \\
2 & 4 & -2 \\
-2 & -2 & 1
\end{array}\right) & \rightarrow\left(\begin{array}{lll}
0 & 2 & -1 \\
2 & 4 & -2 \\
0 & 2 & -1
\end{array}\right) \rightarrow\left(\begin{array}{lll}
0 & 2 & -1 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
A+I=\left(\begin{array}{ccc}
-3 & -6 & 3 \\
2 & 5 & -2 \\
-2 & -2 & 2
\end{array}\right) & \rightarrow\left(\begin{array}{lll}
1 & 2 & -1 \\
2 & 5 & -2 \\
1 & 1 & -1
\end{array}\right) \\
& \rightarrow\left(\begin{array}{ccc}
1 & 2 & -1 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right)
\end{aligned} \rightarrow\left(\begin{array}{lll}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

We conclude that $A v_{1}=\mathbf{0}$ has the non-trivial solution $v_{1}=\left(\begin{array}{c}0 \\ 1 \\ 2\end{array}\right)$, that $A v_{2}=-v_{2}$ has the non-trivial solution $v_{2}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$, and $A v_{3}=$ $2 v_{3}$ has the non-trivial solution $v_{3}=\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$.

Note that we could replace v_{j} with $a v_{j}$ for any scalar $a \neq 0$ and still obtain an eigenvector.
(b) Let $Q=\left[v_{1}\left|v_{2}\right| v_{3}\right] \in \mathbb{M}_{3 \times 3}$ be the matrix whose column vectors are the eigenvectors v_{j}. Compute $Q^{-1} A Q$, and verify that this is a diagonal matrix whose diagonal entries are the eigenvalues of A.

Solution. [10 points] We start by computing Q^{-1}, by row reducing $[Q \mid I]$ to $\left[I \mid Q^{-1}\right]$:

$$
\begin{aligned}
{[Q \mid I]=} & \left(\begin{array}{ccc|ccc}
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & -1 & 0 & 1 & 0 \\
2 & 1 & 0 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc|ccc}
1 & 0 & -1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & -2 & 1
\end{array}\right) \\
& \rightarrow\left(\begin{array}{ccc|ccc}
1 & 0 & -1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 & -2 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & -1 & -1 & 1 \\
0 & 1 & 0 & 2 & 2 & -1 \\
0 & 0 & 1 & -1 & -2 & 1
\end{array}\right)
\end{aligned}
$$

Now we have

$$
\begin{aligned}
& Q^{-1} A Q=\left(\begin{array}{ccc}
-1 & -1 & 1 \\
2 & 2 & -1 \\
-1 & -2 & 1
\end{array}\right)\left(\begin{array}{ccc}
-4 & -6 & 3 \\
2 & 4 & -2 \\
-2 & -2 & 1
\end{array}\right)\left(\begin{array}{ccc}
0 & 1 & 1 \\
1 & 0 & -1 \\
2 & 1 & 0
\end{array}\right) \\
&=\left(\begin{array}{ccc}
-1 & -1 & 1 \\
2 & 2 & -1 \\
-1 & -2 & 1
\end{array}\right)\left(\begin{array}{ccc}
0 & -1 & 2 \\
0 & 0 & -2 \\
0 & -1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 2
\end{array}\right)
\end{aligned}
$$

Notice that the columns of $A Q$ are scalar multiples of the columns of Q, and that the ratios between them are the eigenvalues. This is because the columns of Q were chosen to be eigenvectors of A.
3. Let x_{n} be the sequence of integers defined by $x_{0}=x_{1}=x_{2}=1$ and the recursive relationship

$$
x_{n}=x_{n-1}+2 x_{n-2}-x_{n-3} .
$$

Write down a 3×3 matrix A whose powers can be used to compute x_{n}, and explain how x_{n} can be obtained from A^{n}. Hint: Let $v_{n} \in \mathbb{R}^{3}$ be the
vector with components x_{n}, x_{n-1}, x_{n-2}, and find a relationship between v_{n} and v_{n-1}.

Solution. [10 points] As suggested, let $v_{n}=\left(\begin{array}{c}x_{n} \\ x_{n-1} \\ x_{n-2}\end{array}\right)$ for $n \geq 2$. Then $v_{n-1}=\left(\begin{array}{c}x_{n-1} \\ x_{n-2} \\ x_{n-3}\end{array}\right)$, and to express v_{n} in terms of v_{n-1} we need to use the relationship $x_{n}=x_{n-1}+2 x_{n-2}-x_{n-3}$ to get

$$
v_{n}=\left(\begin{array}{c}
x_{n-1}+2 x_{n-2}-x_{n-3} \\
x_{n-1} \\
x_{n-2}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 2 & -1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
x_{n-1} \\
x_{n-2} \\
x_{n-3}
\end{array}\right)
$$

Note that x_{n} is the first component of v_{n}, and that with $A=\left(\begin{array}{ccc}1 & 2 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$, the relationship $v_{n}=A v_{n-1}$ holds for all $n \geq 3$. Thus we have

$$
v_{n}=A^{n-2} v_{2}=A^{n-2}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

In particular, x_{n} is the sum of the entries in the first row of A^{n-2}.
4. Use the formula for determinant of a 2×2 matrix to prove that $\operatorname{det}(A B)=$ $\operatorname{det}(A) \operatorname{det}(B)$ for any $A, B \in \mathbb{M}_{2 \times 2}$.

Solution. [10 points] Consider the 2×2 matrices $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $B=\left(\begin{array}{ll}w & x \\ y & z\end{array}\right)$. On the one hand we have

$$
\begin{aligned}
\operatorname{det}(A) \operatorname{det}(B) & =\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
w & x \\
y & z
\end{array}\right) \\
& =(a d-b c)(w z-x y) \\
& =a d w z-b c w z-a d x y+b c x y
\end{aligned}
$$

On the other hand we have

$$
\begin{aligned}
\operatorname{det}(A B)= & \operatorname{det}\left(\begin{array}{ll}
a w+b y & a x+b z \\
c w+d y & c x+d z
\end{array}\right) \\
= & (a w+b y)(c x+d z)-(a x+b z)(c w+d y) \\
= & (a w c x+b y c x+a w d z+b y d z) \\
& \quad-(a x c w+b z c w+a x d y+b z d y) \\
= & b y c x+a x d z-b z c w-a x d y
\end{aligned}
$$

and we see that the two expressions are equal.
5. Given each of the following sets of four points in \mathbb{R}^{2}, compute the area of the parallelogram with vertices at those four points.
(a) $(0,0),(2,1),(1,1)$, and $(3,2)$
(b) $(0,0),(3,2),(2,4)$, and $(-1,2)$
(c) $(1,1),(2,2),(0,3)$, and $(-1,2)$

Solution. [10 points]
(a) Let $v=\binom{2}{1}$ and $w=\binom{1}{1}$, then the vertices are $0, v, w$, and $v+w$, so the area of the parallelogram is $\operatorname{det}\left(\begin{array}{ll}v & w\end{array}\right)=\operatorname{det}\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)=$ $2 \cdot 1-1 \cdot 1=1$.
(b) Let $v=\binom{3}{2}$ and $w=\binom{-1}{2}$, then the vertices are $0, v, w$, and $v+w$, so the area of the parallelogram is $\operatorname{det}(v w)=\operatorname{det}\left(\begin{array}{cc}3 & -1 \\ 2 & 2\end{array}\right)=$ $3 \cdot 2-(-1) \cdot 2=8$.
(c) Let $a=\binom{1}{1}, v=\binom{1}{1}$, and $w=\binom{-2}{1}$: then then vertices of the parallelogram are $a, a+v, a+w$, and $a+v+w$, so it has the same area as the paralellogram with vertices $0, v, w$, and $v+w$, which

