Test 1 Review

You are responsible for knowing the definitions of all the terms below. Also listed are some common procedures you should know how to do (e.g. "determining whether or not a subset is a subspace") and some general results you should know (e.g. "If S is spanning and L is linearly independent, then $\left.\# L \leq \# S^{\prime \prime}\right)$. You may be asked to prove simple instances of these results (e.g. "If there exists $v \in S$ such that $v \in \operatorname{span}(S \backslash\{v\})$, then S is linearly dependent").

Vector spaces.

- Examples: $\mathbb{R}^{n}, \mathbb{C}^{n}, \mathbb{P}_{n}, \mathbb{P}, C(\mathbb{R}), C^{1}(\mathbb{R})$.
- Determining whether something is or is not a vector space

Subspaces.

- Examples, determining whether something is a subspace.
- Sums of subspaces.
- Direct sums, determining whether or not a given sum is direct.
- Existence of a complement of a subspace W in finite-dimensional spaces (another subspace X such that $V=W \oplus X)$ - Theorem 4.11

Linear combinations and span.

- Determining whether or not a vector is in the span of a set.
- Determining whether or not a set spans the entire vector space.
- Relationship to non-homogeneous systems of linear equations.

Linear dependence and independence.

- Determining whether or not a given set is linearly dependent.
- If S is spanning and L is linearly independent, then $\# L \leq \# S$ - Proposition 3.4
- Behaviour of linearly dependent and independent sets under adding or removing vectors - Exercise 3.3.
- S is linearly dependent iff there is $v \in S$ such that $v \in \operatorname{span}(S \backslash\{v\})$, iff there is $v \in S$ such that $\operatorname{span}(S \backslash\{v\})=\operatorname{span}(S)-\operatorname{Proposition~} 3.5$
- S is linearly independent iff everything in $\operatorname{span} S$ can be represented in a unique way - Proposition 3.6

Bases and dimension

- Every basis has the same number of vectors - Theorem 3.9
- Finite spanning set implies existence of a finite basis - Lemma 4.5
- Every linearly independent set can be completed to a basis if V is finitedimensional - Theorem 4.7
- Determining whether a given set is a basis. If the number of vectors in B is not equal to $\operatorname{dim} V$, then B is not a basis. If it is equal, then it is only necessary to check either linear independence or spanning, and the other follows.

Quotient spaces

- Equivalence modulo a subspace, congruence classes.
- Congruence classes are affine subspaces: $[v]_{Y}=v+Y$. (Proposition 5.4)
- Formula for dimension of quotient space - Theorem 5.7

Dual spaces

- Linear functionals, examples.
- Finite-dimensionality implies $\operatorname{dim}\left(V^{\prime}\right)=\operatorname{dim}(V)$ - Theorem 5.10

Linear maps

- Examples: differentiation, evaluation, matrix multiplication, rotation.
- Determining whether a map is linear.
- Behaviour of linear dependence and independence: a dependent set gets mapped to a dependent set (Proposition 6.13). An independent set gets mapped to an independent set if the map is 1-1 (Exercise 6.14).
- A spanning set gets mapped to a spanning set if T is onto - Exercise 6.15
- Images and preimages of subspaces are subspaces - Theorem 6.16
- A linear transformation is uniquely determined by its action on a basis Lemma 7.7

Nullspace and range

- Determining the nullspace and range of a map.
- T is 1-1 iff N_{T} is trivial - Exercise 7.4
- Solution sets of systems of equations and ODEs as nullspaces.
- Dimension of nullspace + dimension of range $=$ dimension of domain (Theorem 9.1)

Isomorphisms

- If T is an isomorphism, then B is a basis if and only if $T(B)$ is - Proposition 7.6
- Two finite-dimensional vector spaces are isomorphic iff they have the same dimension - Theorem 7.8

Compositions of linear maps

- Associativity and distributivity
- Non-commutativity.
- Transpose of a linear transformation, relationship to transpose of a matrix.

