
Lorenz system

ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

Fix σ = 10, β = 8
3 , let ρ vary.

0 < ρ < 1: only fixed point is 0, globally attracting

1 < ρ < ρ0 := 13.926 . . . : now 0 has an unstable direction, two other
attracting fixed points
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At ρ = ρ0 there is a homoclinic bifurcation: the unstable manifold of 0
comes back and approaches 0 through the stable manifold, so it is a
homoclinic orbit.

For ρ > ρ0, the unstable curve crosses past the stable manifold (without
intersecting it) and approaches the other fixed point. This forces the
geometry of the stable manifold to be very complicated.
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Stable manifold for 0 sometime after the homoclinic bifurcation:

First picture: Abraham and Shaw (1982), hand-drawn
Second picture: Osinga and Krauskopf (2002), computer-generated
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How to understand behaviour of the system? Use a Poincaré section.

There is a horseshoe. This leads to intermittent chaos.
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At ρ = ρ1 ≈ 24.05, behaviour changes – p1, p2 are contained in the
horseshoe, get chaotic attractor – persistent chaos.
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