PROBLEM SET 1

Due 5pm Thursday Sept. 20. You must give complete justification for all answers in order to receive full credit.

- **1.** Let $\|\cdot\|$ be the operator norm on $\mathcal{L}(\mathbb{R}^n)$ induced by some norm on \mathbb{R}^n .
- (a) Let $T \in \mathcal{L}(\mathbb{R}^n)$ be such that ||T I|| < 1. Show that T is invertible and that the series $\sum_{k=0}^{\infty} (I - T)^k$ converges absolutely to T^{-1} . Find an upper bound for $||T^{-1}||$.
- (b) Let $T \in \mathcal{L}(\mathbb{R}^n)$ be invertible. Find $\epsilon > 0$ such that every S with $||S T|| < \epsilon$ is invertible as well. (*Hint: apply the above result to* $T^{-1}S$.)
- (c) Show that if ||T I|| is sufficiently small, then there is $S \in \mathcal{L}(\mathbb{R}^n)$ such that $e^S = T$. To what extent is S unique? (*Hint: consider the power series of* $\log(1 + x)$.)
- **2.** Given $T \in \mathcal{L}(\mathbb{R}^n)$, let $\sigma(T)$ be the set of eigenvalues for T. Let $\lambda_{\min} = \min\{|\lambda| \mid \lambda \in \sigma(T)\}$ and $\lambda_{\max} = \max\{|\lambda| \mid \lambda \in \sigma(T)\}$. Suppose that T is invertible, and let $\|\cdot\|$ be the operator norm on $\mathcal{L}(\mathbb{R}^n)$ associated to some norm $|\cdot|$ on \mathbb{R}^n .
- (a) Show that $||T^{-1}||^{-1} = \min\{||Tx|| \mid |x| = 1\}$ and that:

(1)
$$\|T^{-1}\|^{-1} \le \lambda_{\min} \le \lambda_{\max} \le \|T\|$$

(2)
$$\lim_{k \to \infty} \|T^k\|^{1/k} = \lambda_{\max} \quad \text{and} \quad \lim_{k \to \infty} \|T^{-k}\|^{-1/k} = \lambda_{\min}$$

- (b) Let B be an m×m upper Jordan block, so that B = λI+N, where N is nilpotent of order m, with ones immediately above the main diagonal and zeros elsewhere. Let Q = diag(1, ε, ε²,..., ε^{m-1}) for some fixed ε > 0, and show that Q⁻¹BQ = λI + εN. Thus the ones above the main diagonal in a Jordan block can be replaced by any ε > 0.
- (c) Show that for every $\epsilon > 0$ there exists a norm $|\cdot|$ on \mathbb{R}^n such that the associated operator norm on $\mathcal{L}(\mathbb{R}^n)$ has
 - (3) $\lambda_{\min} \epsilon \le ||T^{-1}||^{-1} \le \lambda_{\min} \le \lambda_{\max} \le ||T|| \le \lambda_{\max} + \epsilon.$
- **3.** Prove that $T \in \mathcal{L}(\mathbb{R}^n)$ is nilpotent if and only if all its eigenvalues are zero.

- 4. Solve the following initial value problems by writing an equivalent first order system and using matrix exponentials:
- (a) $\ddot{x} + 9x = 0$, x(0) = 0, $\dot{x}(0) = 1$. (b) $\ddot{x} - 4\dot{x} + 3x = 0$, x(1) = -4, $\dot{x}(1) = 0$.
- 5. Give necessary and sufficient conditions on $a, b \in \mathbb{R}$ for $\ddot{x} + a\dot{x} + bx = 0$ to have a non-trivial periodic solution.
- 6. Solve $\dot{x} = Ax$, $x(0) = (1, -1, 1, 0)^t$ where

$$A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

- 7. Let $A \in \mathbb{M}_{n \times n}$ and suppose that all eigenvalues of A have nonpositive real parts.
- (a) If A is semisimple, show that every solution of $\dot{x} = Ax$ is bounded in forward time, in the following sense: for every x(0) there exists $M \in \mathbb{R}$ such that $|x(t)| \leq M$ for all $t \geq 0$.
- (b) Give an example of an invertible matrix A such that all eigenvalues have nonpositive real parts but $\dot{x} = Ax$ has a solution such that $|x(t)| \to \infty$ as $t \to \infty$. What is the smallest dimension in which such an example can exist?