PROBLEM SET 1

Due 5pm Thursday Sept. 20. You must give complete justification for all answers in order to receive full credit.

1. Let $\|\cdot\|$ be the operator norm on $\mathcal{L}\left(\mathbb{R}^{n}\right)$ induced by some norm on \mathbb{R}^{n}.
(a) Let $T \in \mathcal{L}\left(\mathbb{R}^{n}\right)$ be such that $\|T-I\|<1$. Show that T is invertible and that the series $\sum_{k=0}^{\infty}(I-T)^{k}$ converges absolutely to T^{-1}. Find an upper bound for $\left\|T^{-1}\right\|$.
(b) Let $T \in \mathcal{L}\left(\mathbb{R}^{n}\right)$ be invertible. Find $\epsilon>0$ such that every S with $\|S-T\|<\epsilon$ is invertible as well. (Hint: apply the above result to $T^{-1} S$.)
(c) Show that if $\|T-I\|$ is sufficiently small, then there is $S \in \mathcal{L}\left(\mathbb{R}^{n}\right)$ such that $e^{S}=T$. To what extent is S unique? (Hint: consider the power series of $\log (1+x)$.)
2. Given $T \in \mathcal{L}\left(\mathbb{R}^{n}\right)$, let $\sigma(T)$ be the set of eigenvalues for T. Let $\lambda_{\text {min }}=$ $\min \{|\lambda| \mid \lambda \in \sigma(T)\}$ and $\lambda_{\max }=\max \{|\lambda| \mid \lambda \in \sigma(T)\}$. Suppose that T is invertible, and let $\|\cdot\|$ be the operator norm on $\mathcal{L}\left(\mathbb{R}^{n}\right)$ associated to some norm $|\cdot|$ on \mathbb{R}^{n}.
(a) Show that $\left\|T^{-1}\right\|^{-1}=\min \{\|T x\|| | x \mid=1\}$ and that:

$$
\begin{gather*}
\left\|T^{-1}\right\|^{-1} \leq \lambda_{\min } \leq \lambda_{\max } \leq\|T\| \tag{1}\\
\lim _{k \rightarrow \infty}\left\|T^{k}\right\|^{1 / k}=\lambda_{\max } \quad \text { and } \quad \lim _{k \rightarrow \infty}\left\|T^{-k}\right\|^{-1 / k}=\lambda_{\min } \tag{2}
\end{gather*}
$$

(b) Let B be an $m \times m$ upper Jordan block, so that $B=\lambda I+N$, where N is nilpotent of order m, with ones immediately above the main diagonal and zeros elsewhere. Let $Q=\operatorname{diag}\left(1, \epsilon, \epsilon^{2}, \ldots, \epsilon^{m-1}\right)$ for some fixed $\epsilon>0$, and show that $Q^{-1} B Q=\lambda I+\epsilon N$. Thus the ones above the main diagonal in a Jordan block can be replaced by any $\epsilon>0$.
(c) Show that for every $\epsilon>0$ there exists a norm $|\cdot|$ on \mathbb{R}^{n} such that the associated operator norm on $\mathcal{L}\left(\mathbb{R}^{n}\right)$ has

$$
\begin{equation*}
\lambda_{\min }-\epsilon \leq\left\|T^{-1}\right\|^{-1} \leq \lambda_{\min } \leq \lambda_{\max } \leq\|T\| \leq \lambda_{\max }+\epsilon \tag{3}
\end{equation*}
$$

3. Prove that $T \in \mathcal{L}\left(\mathbb{R}^{n}\right)$ is nilpotent if and only if all its eigenvalues are zero.
4. Solve the following initial value problems by writing an equivalent first order system and using matrix exponentials:
(a) $\ddot{x}+9 x=0, \quad x(0)=0, \quad \dot{x}(0)=1$.
(b) $\ddot{x}-4 \dot{x}+3 x=0, \quad x(1)=-4, \quad \dot{x}(1)=0$.
5. Give necessary and sufficient conditions on $a, b \in \mathbb{R}$ for $\ddot{x}+a \dot{x}+b x=0$ to have a non-trivial periodic solution.
6. Solve $\dot{x}=A x, x(0)=(1,-1,1,0)^{t}$ where

$$
A=\left(\begin{array}{llll}
2 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 1 & 2
\end{array}\right)
$$

7. Let $A \in \mathbb{M}_{n \times n}$ and suppose that all eigenvalues of A have nonpositive real parts.
(a) If A is semisimple, show that every solution of $\dot{x}=A x$ is bounded in forward time, in the following sense: for every $x(0)$ there exists $M \in \mathbb{R}$ such that $|x(t)| \leq M$ for all $t \geq 0$.
(b) Give an example of an invertible matrix A such that all eigenvalues have nonpositive real parts but $\dot{x}=A x$ has a solution such that $|x(t)| \rightarrow \infty$ as $t \rightarrow \infty$. What is the smallest dimension in which such an example can exist?
