PROBLEM SET 3

Due 5pm Tuesday Nov. 20. You must give complete justification for all answers in order to receive full credit.

1. Consider the non-linear system of ODEs

$$
\begin{align*}
\dot{x}_{1} & =-x_{1}, \\
\dot{x}_{2} & =-x_{2}+x_{1}^{2}, \tag{1}\\
\dot{x}_{3} & =x_{3}+x_{2}^{2},
\end{align*}
$$

which has an equilibrium point at $x=0$.
(a) Write (1) as $\dot{x}=A x+F(x)$, where $A \in \mathbb{M}_{3 \times 3}$ and $D F(0)=0$. Write the linear part as $A=P \oplus Q$ where $P: E^{s} \rightarrow E^{s}$ and $Q: E^{u} \rightarrow E^{u}$. Write the non-linear part as $F=F^{s}+F^{u}$ where $F^{s}: \mathbb{R}^{3} \rightarrow E^{s}$ and $F^{u}: \mathbb{R}^{3} \rightarrow E^{u}$.
(b) Show that the unstable subspace E^{u} is invariant for (1), so that in particular the unstable manifold W^{u} is just the unstable subspace.
(c) Recall that the stable manifold is the graph of a function $\psi: E^{s} \rightarrow$ E^{u} whose value $\psi(a)$ at $a \in E^{s}$ is given by $x^{u}(0)$, where x is the unique fixed point of the operator

$$
(\mathcal{P} x)(t)=e^{P t} a+\int_{0}^{t} e^{P(t-s)} F^{s}(x(s)) d s-\int_{t}^{\infty} e^{Q(t-s)} F^{u}(x(s)) d s
$$

Given a curve $x(t)=\left(x_{1}(t), x_{2}(t), x_{3}(t)\right) \rightarrow 0$, write down an explicit expression for $(\mathcal{P} x)(t)$ in the setting of (1) by using P, Q, F^{s}, F^{u} from part (a).
(d) The fixed point of \mathcal{P} can be found as the limit of the curves $\mathcal{P}^{n} x$ for some starting curve $x:[0, \infty) \rightarrow \mathbb{R}^{n}$. For the starting curve $x(t)=e^{P t} a$, which is the solution of the linear system, compute $\mathcal{P}^{n} x$ for $n=1,2,3$. Observe that $\mathcal{P}^{2}(x)$ is the fixed point of \mathcal{P} and use this to write down a formula for the stable manifold W^{s}.
2. The Lorenz equation in \mathbb{R}^{3} is given by

$$
\dot{x}=f(x)=\left(\begin{array}{c}
x_{2}-x_{1} \\
\mu x_{1}-x_{2}-x_{1} x_{3} \\
x_{1} x_{2}-x_{3}
\end{array}\right)
$$

for a parameter $\mu>0$. The origin is always an equilibrium point. At what value of μ do two new equilibrium points appear? Find the eigenvalues at the nonzero equilibrium points as a function of μ and describe the stability of these points.
3. Let $\varphi_{t}: U \rightarrow U$ and $\psi_{t}: V \rightarrow V$ be flows (here $U, V \subset \mathbb{R}^{n}$ are open). We say that the flows are topologically conjugate if there exists a homeomorphism $h: U \rightarrow V$ such that $h \circ \varphi_{t}=\psi_{t} \circ h$ for all $t \in \mathbb{R}$. If h is a C^{1} diffeomorphism, we say the flows are C^{1}-conjugate.
(a) Suppose φ_{t} and ψ_{t} are topologically conjugate. Show that h maps equilibria of φ_{t} to equilibria of ψ_{t}, and similarly for periodic orbits. Need the period of corresponding periodic orbits be the same? Either prove or give a counterexample.
(b) Suppose φ_{t} and ψ_{t} are C^{1}-conjugate. Show that if x_{0} and $h\left(x_{0}\right)$ are equilibria for φ_{t}, ψ_{t} respectively, then the linearisations have the same eigenvalues.
4. Consider the non-linear system of ODEs

$$
\begin{align*}
& \dot{x}_{1}=-x_{1}, \\
& \dot{x}_{2}=-x_{2}+x_{1}^{2}, \tag{2}\\
& \dot{x}_{3}=x_{3}+x_{1}^{2},
\end{align*}
$$

which has a hyperbolic equilibrium point at $x=0$. The HartmanGrobman theorem states that there is a topological conjugacy H between (2) and its linearisation on a neighbourhood of the origin.
(a) Solve the system (2) explicitly and write down a formula for the time- 1 map φ_{1} and its inverse φ_{-1}.
(b) Let L be the time-1 map of the linearised system, and let $L^{s}=$ $\left.L\right|_{E^{s}}, L^{u}=\left.L\right|_{E^{u}}$, so that $L=L^{s} \oplus L^{u}$. Write $H=\left(H^{s}, H^{u}\right)$, where $H^{s}: \mathbb{R}^{3} \rightarrow E^{s}$ and $H^{u}: \mathbb{R}^{3} \rightarrow E^{u}$. Then the conjugacy H_{0} between φ_{1} and L is obtained as the fixed point of the operator \mathcal{P} given by

$$
(\mathcal{P} H)(x)=\left(L^{s} H^{s}\left(\varphi_{-1}(x)\right),\left(L^{u}\right)^{-1} H^{u}\left(\varphi_{1}(x)\right)\right)
$$

Given a function $H(x)=\left(H_{1}(x), H_{2}(x), H_{3}(x)\right)$ on \mathbb{R}^{3}, write an explicit formula for $(\mathcal{P} H)\left(x_{1}, x_{2}, x_{3}\right)$ using the time- 1 map you computed in part (a).
(c) Let $I: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the identity map, and show that $\mathcal{P}^{n} I$ converges on \mathbb{R}^{3} to a homeomorphism $H_{0}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$. Show that H_{0} is a topological conjugacy between φ_{1} and L.
(d) Use H_{0} to find a topological conjugacy H between (2) and its linearisation on all of \mathbb{R}^{3}.

