PROBLEM SET 4

Due 5pm Thursday Dec. 6. You must give complete justification for all answers in order to receive full credit.

1. (Perko, exercise 3.5.2, page 213) Consider the nonlinear system

$$\dot{x} = x - 4y - \frac{x^3}{4} - xy^2$$

$$\dot{y} = x + y - \frac{x^2y}{4} - y^3$$

$$\dot{z} = z.$$

- (a) Show that $\gamma(t) = (2\cos 2t, \sin 2t, 0)$ is a periodic solution with period $T = \pi$.
- (b) Determine the linearisation of this system around the periodic orbit γ by finding $A(t) = Df(\gamma(t))$ such that the linearisation is $\dot{v} = A(t)v$.
- (c) Show that the following is a fundamental matrix for $\dot{v} = A(t)v$:

$$\Phi(t) = \begin{pmatrix} e^{-2t} \cos 2t & -2\sin 2t & 0\\ \frac{1}{2}e^{-2t} \sin 2t & \cos 2t & 0\\ 0 & 0 & e^t \end{pmatrix}$$

- (d) Write $\Phi(t)$ as $\Phi(t) = Q(t)e^{Bt}$, where Q is a T-periodic 3×3 matrix and $B \in \mathbb{M}_{3\times 3}$ is constant.
- (e) Use the previous part to determine the characteristic exponents and the characteristic multipliers of the periodic orbit $\gamma(t)$. What can you say about the stability of the periodic orbit?
- 2. (Hirsch-Smale exercise 11.1.5, page 241)

Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a C^1 vector field and suppose that the flow φ_t of $\dot{x} = f(x)$ is defined for all $t \in \mathbb{R}$ and all $x \in \mathbb{R}^n$. Suppose that $X \subset \mathbb{R}^n$ is a nonempty compact invariant set for φ_t , and suppose in addition that X is *minimal*: that is, X does not contain any compact invariant nonempty proper subset. Prove the following:

- (a) Every trajectory in X is dense in X.
- (b) $\alpha(x) = \omega(x) = X$ for every $x \in X$.
- (c) For every $x_0 \in X$ and $\epsilon > 0$, there is a number T > 0 such that for every $x \in X$ and $t_0 \in \mathbb{R}$, there exists $t \in \mathbb{R}$ such that $|t t_0| < T$ and $|\varphi_t(x) x_0| < \epsilon$. (This is a statement about how quickly orbits become dense.)

3. (Perko, exercise 3.2.4, page 183)

Sketch the phase portrait of a single planar system (an ODE in \mathbb{R}^2) containing points x_1, \ldots, x_5 with the following properties:

- (a) $\alpha(x_1) = \omega(x_1) = \{x_0\}$, but $x_0 \neq x_1$;
- (b) $\omega(x_2)$ is a single orbit;
- (c) $\omega(x_3)$ is the union of an orbit and an equilibrium point;
- (d) $\omega(x_4)$ is the union of two orbits and a single equilibrium point;
- (e) $\omega(x_5)$ is the union of two orbits and two equilibrium points.

Identify the points x_1, \ldots, x_5 in your picture.

4. Consider the following ODE in \mathbb{R}^2 :

$$\dot{x} = y,$$

 $\dot{y} = -x + y(4 - 2x^2 - 3y^2).$

- (a) For the function $V(x,y) = \frac{1}{2}(x^2 + y^2)$, compute \dot{V} and deduce that the annulus $A = \{(x,y) \in \mathbb{R}^2 \mid 1 < x^2 + y^2 < 2\}$ is forward-invariant.
- (b) Use the Poincaré–Bendixson Theorem to show that A contains a non-trivial periodic orbit.