PROBLEM SET 4

Due 5pm Thursday Dec. 6. You must give complete justification for all answers in order to receive full credit.

1. (Perko, exercise 3.5.2, page 213) Consider the nonlinear system

$$
\begin{aligned}
& \dot{x}=x-4 y-\frac{x^{3}}{4}-x y^{2} \\
& \dot{y}=x+y-\frac{x^{2} y}{4}-y^{3} \\
& \dot{z}=z .
\end{aligned}
$$

(a) Show that $\gamma(t)=(2 \cos 2 t, \sin 2 t, 0)$ is a periodic solution with period $T=\pi$.
(b) Determine the linearisation of this sytem around the periodic orbit γ by finding $A(t)=D f(\gamma(t))$ such that the linearisation is $\dot{v}=$ $A(t) v$.
(c) Show that the following is a fundamental matrix for $\dot{v}=A(t) v$:

$$
\Phi(t)=\left(\begin{array}{ccc}
e^{-2 t} \cos 2 t & -2 \sin 2 t & 0 \\
\frac{1}{2} e^{-2 t} \sin 2 t & \cos 2 t & 0 \\
0 & 0 & e^{t}
\end{array}\right)
$$

(d) Write $\Phi(t)$ as $\Phi(t)=Q(t) e^{B t}$, where Q is a T-periodic 3×3 matrix and $B \in \mathbb{M}_{3 \times 3}$ is constant.
(e) Use the previous part to determine the characteristic exponents and the characteristic multipliers of the periodic orbit $\gamma(t)$. What can you say about the stability of the periodic orbit?
2. (Hirsch-Smale exercise 11.1.5, page 241)

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a C^{1} vector field and suppose that the flow φ_{t} of $\dot{x}=f(x)$ is defined for all $t \in \mathbb{R}$ and all $x \in \mathbb{R}^{n}$. Suppose that $X \subset \mathbb{R}^{n}$ is a nonempty compact invariant set for φ_{t}, and suppose in addition that X is minimal: that is, X does not contain any compact invariant nonempty proper subset. Prove the following:
(a) Every trajectory in X is dense in X.
(b) $\alpha(x)=\omega(x)=X$ for every $x \in X$.
(c) For every $x_{0} \in X$ and $\epsilon>0$, there is a number $T>0$ such that for every $x \in X$ and $t_{0} \in \mathbb{R}$, there exists $t \in \mathbb{R}$ such that $\left|t-t_{0}\right|<T$ and $\left|\varphi_{t}(x)-x_{0}\right|<\epsilon$. (This is a statement about how quickly orbits become dense.)
3. (Perko, exercise 3.2.4, page 183)

Sketch the phase portrait of a single planar system (an ODE in \mathbb{R}^{2}) containing points x_{1}, \ldots, x_{5} with the following properties:
(a) $\alpha\left(x_{1}\right)=\omega\left(x_{1}\right)=\left\{x_{0}\right\}$, but $x_{0} \neq x_{1}$;
(b) $\omega\left(x_{2}\right)$ is a single orbit;
(c) $\omega\left(x_{3}\right)$ is the union of an orbit and an equilibrium point;
(d) $\omega\left(x_{4}\right)$ is the union of two orbits and a single equilibrium point;
(e) $\omega\left(x_{5}\right)$ is the union of two orbits and two equilibrium points.

Identify the points x_{1}, \ldots, x_{5} in your picture.
4. Consider the following ODE in \mathbb{R}^{2} :

$$
\begin{aligned}
& \dot{x}=y, \\
& \dot{y}=-x+y\left(4-2 x^{2}-3 y^{2}\right) .
\end{aligned}
$$

(a) For the function $V(x, y)=\frac{1}{2}\left(x^{2}+y^{2}\right)$, compute \dot{V} and deduce that the annulus $A=\left\{(x, y) \in \mathbb{R}^{2} \mid 1<x^{2}+y^{2}<2\right\}$ is forwardinvariant.
(b) Use the Poincaré-Bendixson Theorem to show that A contains a non-trivial periodic orbit.

