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I. Introduction.

There is a profound two-way interaction be-
tween C∗-modules and operator spaces, which
has attracted much interest in recent years.

• C∗-module theory fits comfortably into the
framework of operator modules, as opposed
to Banach modules.

• Every operator space X sits c. isometrically
inside its noncommutative Shilov boundary
T (X), which is a C∗-module or TRO.

• Thus general operator space can be stud-
ied using C∗-module methods.

• Topics like nuclearity for operator spaces
can be studied using C∗-module methods
(Effros-Ozawa-Ruan, Kye and Ruan, ...).
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Recall that a TRO is a closed subspace Z of

B(K, H) (or of a C∗-algebra), with ZZ?Z ⊂ Z.

Example: pA(1− p), for a C∗-algebra A and a

projection p in A (or in M(A)).

A (right) C∗-module Y over a C∗-algebra A

is defined like a Hilbert space except that it

is a right A-module, and the inner product is

A-valued, and satisfies

(1) 〈y|y〉 ≥ 0 for all y ∈ Y ,

(2) 〈y|y〉 = 0 if and only if y = 0,

(3) 〈y|za〉 = 〈y|z〉a for all y, z ∈ Y, a ∈ A,

(4) 〈y|z〉∗ = 〈z|y〉 for all y, z ∈ Y ,

3



(5) Y is complete in the norm ‖y‖ = ‖〈y|y〉‖
1
2.

Clearly every TRO Z is a right C∗-module over

the C*-algebra Z∗Z, with inner product

〈x|y〉 = x∗y

(Similarly it is a left C∗-module over ZZ∗)

Say T : Y → Z is adjointable if ∃ S : Z → Y

with

〈T (y) | z 〉 = 〈 y |S(z) 〉, y ∈ Y, z ∈ Z.

Write B(Y, Z) for the set of adjointable maps

from Y to Z, and write S as T ∗.
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Fact: B(Y ) = B(Y, Y ) is a C∗-algebra with re-

spect to the usual norm We define K(Y ) to be

the closure in B(Y ), of the linear span of the

‘rank-one’ operators |z〉〈y|, for y ∈ Y, z ∈ Z.

Here |z〉〈y| is the operator which takes an x ∈ Y

to z〈y|x〉.

K(Y ) is a closed two-sided ideal in B(Y ).
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Linking C*-algebra: ∀ C∗-module Y over A ∃
C*-algebra

L(Y ) =

[
K(Y) Y

Ȳ A

]
.

And Y = pL(Y )(1−p) for projection p = 1⊕0.

Application: C*-modules = TROs

So C*-modules are operator spaces, and they

fit miraculously together.
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A few examples of the ‘miraculous’:

• B(Y ) = A`(Y ) ⊂ CB(Y ) c. isom.

BA(Y ) = M`(Y ) ⊂ CB(Y ) c. isom.

Indeed theory of one-sided multipliers and

M-ideals generalizes the theory of module

maps and submodules of C∗-modules

• The most important tensor product of C*-

modules, is just the ‘module Haagerup’ ten-

sor product, an op. space construction.

• Quotients of C∗-modules are C∗-modules,

and are op. spaces, and the two structures

are compatible!

• · · ·

See e.g. Chapter 8 in [B-Le Merdy book]
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II. The noncommutative Shilov boundary

A little more detail...

Quotients in TRO language:

Say subspace J of a TRO Z is a triple ideal if

ZZ∗J ⊂ J and JZ∗Z ⊂ J.

J is an inner ideal if JZ∗J ⊂ J

For triple ideals, Z/J is a TRO, and op. space,

and canonical q : Z → Z/J is a triple morphism.
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Say (Z, i) is a triple extension of an op. space

X if i : X → Z is c. isom. into TRO Z, and @
proper subTRO of Z containing i(X).

Recall from Lecture 2:

Theorem (Hamana) For any triple extension

(Z, i) of X, ∃ triple morphism θ : Z → T (X)

with θ ◦ i = j.

Read this as: T (X) is the smallest TRO con-

taining X.
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Consequences:

• Object T (X) with this universal property is
‘unique’.

• If (Z, i) is any triple extn. of X, can define
T (X) = quotient of Z by a triple ideal.

• Can define T (X) to be any triple extn.
(Z, i) with no proper subTRO J for which
canon. map X → Z/J is c. isometric.

• T (X) is rigid and essential (in sense of Lec-
ture 2).

• Can identify T (X) ⊂ T (X∗∗) canonically
(B-H-N).

• For 1 ∈ X ⊂ C(K), T (X) = C(∂X), where
∂X is classical Shilov bdy of X in K · · ·
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Example. X = `12. Claim: T (X) = (C(T), j),

where j : (α, β) 7→ α1 + βz, where z(eiθ) = eiθ.

Proof: Clearly i is a (complete) isometry, so X

is a unital operator space, and i(X) generates

C(T) by density of trig polynomials. So this

is a triple extension. It is clear that @ ideal in

C(T), or equivalently no closed subset E of T,

s.t. x 7→ i(x)|E is isometric. So by third bullet

above, T (X) = C(T).

Even quicker: Usual Shilov boundary of i(X)

in C(T) is T.

11



III. Appln. to structure in operator spaces

I am a bit obsessed by using the above to study

operator spaces using C*-module/TRO tech-

niques.

We have already seen some examples of this

theme: one-sided M-ideals, recovery of forgot-

ten product in an operator algebra, ... .

Discuss a couple more examples:
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Application of ‘Morita equivalence’.

In the language of TROs, let W be a WTRO

(= TRO with predual), then W is A-B-bimodule

where A is weak closure of WW ∗ and B is weak

closure of W ∗W .

Stable isomorphism theorem: C∞(W ) ∼= C∞(B),

and hence M∞(W ) ∼= M∞(B) c. isometrically.

So M∞(W ) is a W ∗-algebra with some product.
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Apply the above in the case that W = T (X)∗∗

or I(X)∗∗.

So X ⊂ I(X) ⊂ I(X)∗∗ = W , and so

M∞(X) ⊂ M∞(W )

and the latter is a W*-algebra.

How can this be useful?
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Eg. Sketch original (not best) proof that τu c.

contr. ⇒ u ∈M`(X) (Lecture 2)

First prove it for u : N → N , for W*-algebra

N , i.e. τu contr. ⇒ ux = ax for fixed a ∈ N .

Exercise. [Hint: look at τu(

[
p

p⊥

]
) for projn. p

and use density of span of projections in N ]
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Then show if τu c. contr. for X, can extend u

to ũ on I(X) by injectivity.

Still have τũ c. contr. by rigidity.

Take second dual, get map w = ũ∗∗ on W =

I(X)∗∗. Then u′ = w∞ is a map on N =

M∞(W ), and check that τu′ is contr.

Thus by the W*-algebra case, u′(x) = ax for

fixed a ∈ N . Then ‘restrict’ to X to get result.

Key point: we have used a deep fact about

C∗-modules/Morita equivalence in this proof,

to deduce a result about X.
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IV. Structure via T (X): order

I want now to discuss a very recent example

([B-Werner, B-Neal] 2006) of using T (X) to

study structure in X, in this case:

Order in operator spaces

We think of a ‘positive cone’ X+ as a struc-

ture that a (possibly nonunital, nonselfadjoint)

operator space X may have.

If X is contained in a C∗-algebra A then

X+ = X ∩A+

Study this in terms independent of partic. A
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(Note: we’re on totally new ground if X not

selfadj)

We use a new, very algebraic approach

Key idea: Since X ⊂ TRO T (X), first step is

to study order in TROs

This turns out to be very pretty and intricate

(C*-)algebraic in nature

Second step: apply first study to T (X) to de-

duce results about cones on X

The first step:
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A cone d in a TRO Z is called natural if there

exists a one-to-one triple morphism ϕ : Z → A,

for a C*-algebra A, such that ϕ(d) = ϕ(Z) ∩
A+.

We can classify the natural cones on a TRO Z,

they are in bijective correspondence with the

inner ideals in Z which are triple isomorphic to

a C*-algebra, and also in bijective correspon-

dence with a class of partial isometries in Z∗∗.
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To see one implication here:

Z ⊂ A subTRO of C∗-algebra

Z+ = Z ∩A+ is a natural cone

Look at J = Z ∩ Z∗ ∩ Z∗Z ∩ ZZ∗

Exercise: This is is a C*-subalgebra of A which

is also an inner ideal in Z. Moreover, the posi-

tive cone J+ of this C*-subalgebra equals Z+.
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Recall: Akemann’s open projections

Definition (Akemann, ...) If B is a C∗-algebra

then an orthogonal projection q ∈ B∗∗ is open

if it is an increasing limit of positive elements

in B

It is closed if 1− q is open.

(= usual topological notions if B commuta-

tive)

Def. (B-Werner) If Z is a TRO, then a partial

isometry u in Z∗∗ is called open if there is a

net xt ∈ Z converging weak* to u s.t. u∗xt

increasing ... .

(B-Neal) iff the projn. û = 1
2

[
uu∗ u
u∗ u∗u

]
is

open w.r.t. L(Z)
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Theorem Natural cones in a TRO Z are

in bijective correspondence with open partial

isometries in Z∗∗.

u  cu = {z ∈ Z : u∗z ≥ 0, z = uz∗u}

To study such cones, we extend the proper-

ties of open projection (i.e. ‘noncommutative

topology’ to partial isometries). Eg. noncom-

mutative Urysohn lemma

This is essentially C*-algebraic in nature...
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There is a theory of compact partial isome-

tries in the literature (Akemann and Pedersen,

Edwards and Ruttiman), and we use many of

their ideas.

Any x ∈ Z, ‖x‖ = 1 has a ‘range’ and ‘base’

partial isometry

0 6= u(x) ≤ r(x)

Here r(x) is the p.i. in the polar decomp. of x,

and u(x) is the limit of ‘odd powers’ of form

uu∗uu∗ · · ·u∗u

r(x) is open, u(x) is compact
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A cone on an operator space will be called an

operator space cone if ∃ linear c. positive c.

isometry from X into a C*-algebra

Thm. Every operator space cone on a TRO is

contained in a maximal such cone. This cone

is a natural cone.

We classify such maximal cones.

This uses Hamana’s T (X) theorem.
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Example. Let S2 be the unit sphere, and Z

the TRO {f ∈ C(S2) : f(−x) = −f(x)}. In

this case open selfadjoint tripotents u in Z′′

correspond precisely to open subsets U of the

sphere (called blue), which do not intersect −U

(called red). Suppose that S2 \ (U ∪ (−U)) is

colored black.

The above mentioned characterization, in this

example, says that that u (and hence the as-

sociated ordering of Z) is maximal iff the black

region is the boundary of the red region (and

hence also of the blue region).

Thus, for example, a sphere whose top hemi-

sphere is red and whose bottom hemisphere is

blue, with a black equator line, is maximal; but

if you thicken the equator to a black band one

loses maximality.
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Now we understand orderings on TROs

Lets move to orderings on an operator space

X.

If d is an operator space cone on X, say (X, d)

is an ordered operator space

We give T (X) a natural cone, namely the one

corresponding to the open partial isometry u =

∨x∈d r(j(x)).

Theorem T (X) with this cone, satisfies the

universal property/diagram for T (X), but with

all maps (including the triple morphism θ) com-

pletely positive.

Proposition If d spans X then this ordered

T (X) is a C*-algebra, and θ is a ∗-homomorphism
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Example @ c. isometric positive map from `1n
into a C*-algebra

Idea: The usual cone on a vNA predual is span-

ning, so if there did exist such a map then the

ordered T (X) exists and is a C*-algebra.

Actually = C∗(Fn−1) (Paulsen and Zhang)

Check the cones match

Now (0,1,0, · · · ,0) ∈ `1n is positive, but this

corresponds to one of the generators of Fn−1

which is not positive, a contradiction.
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Theorem Suppose that (X, c) is an ordered

operator space, and let j : X → T (X) be as

usual. ∃ c. positive complete isometry from X

into a C*-algebra, if and only if c ⊂ j−1(du),

where u is an open p.i. in T (X)′′.

If these hold and if c densely spans X, then

c = j−1(du) for some open u iff c is a maximal

op. space cone on X.

We also construct a unitization of such ordered

operator spaces.

Final remark. If X is selfadjoint the theory

is slightly easier and better. Some proofs are

different.
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V. Noncommutative function theory

Generalizing ‘classical’ theory of function

algebras/spaces

... i.e. go noncommutative

One way to begin is to take your favorite book

on function spaces or uniform algebras ... and

start replacing C(K) by C*-algebras, topolog-

ical arguments by C*-algebra theory, integrals

and measure arguments with vNA (or work in

A∗∗)
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Why should we do this?

• Solve problems

• Import powerful ideas and tools

• Develop (even basic) theory

• Often leads in surprising directions

• Its often really cute!!

• ... .

Give one example: peak sets

Thesis of my student Hay, and B-Hay-Neal

More on this topic in IWOTA talk
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Peak sets and noncommutative peak inter-

polation:

Recall: if A ⊂ C(K) then a closed set E ⊂ K is

called a peak set if if there exists f ∈ A such

that f |E = 1 and |f(x)| < 1 for all x /∈ E.

An intersection of peak sets is called a p-set

When one looks at the first few results of this

theory, the techniques look 1) as if they should

‘go noncommutative’, 2) will give completely

new and interesting NC results/questions...
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Peak sets are interesting for several reasons.

Eg: ‘relative’ Urysohn lemma’s and interpoln.

Urysohn’s lemma is the ‘best’ result in general

topology

Allows ‘separation’ of two disjoint closed sub-

sets E and F of K ‘by’ a function f ∈ C(K)

We want to ‘separate’ such subsets ‘by’ a func-

tion from A ⊂ C(K)
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More generally: peak sets connect to peak

interpolation:

Given a continuous function defined on E, when

is it the restriction of a function in A? By a

function in A which is e.g. small on F? Or

which is ‘dominated’ by a given ‘control func-

tion’.

To make such concepts go ‘noncommutative’

we need: ‘noncommutative closed subsets’, non-

commutative notion of ‘peaking’, etc
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Common ‘noncommutative’ trick: replace sets

by (orthogonal projections)

Definition (Akemann, ...) If B is a C∗-algebra

then an orthogonal projection q ∈ B∗∗ is open

if it is an increasing limit of positive elements

in B

It is closed if 1− q is open.

(= usual topological notions if B commuta-

tive)

∃ Urysohn lemma, etc (Akemann, ...).
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Definition (Hay [PhD Thesis]) If A is a uni-

tal subalgebra of a C∗-algebra B, and if a ∈
Ball(A) then a closed projection q ∈ B∗∗ is a

peak projection if some a ∈ Ball(A) ‘is 1 on q,

and on 1− q we have |a| < 1’.

That is, aq = q = qa, and (1− q)a∗a(1− q) < 1.

Propn. such q = u(a) = wlimn an

A p-projection is an intersection of peak pro-

jections.
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Many of the ‘first’ results about p-sets are

Urysohn lemma’s relative to A (Bishop,

Glicksberg, Gamelin, Jarosz, ...)

Because it uses operator space duality, and fits

with the theme of this series of lectures, lets

look in some detail at the NC version of the

very first and key lemma in the classical liter-

ature

(Not in IWOTA talk)
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From Hays thesis:

Lemma Let X, Y be possibly incomplete op-

erator spaces. Suppose T : X → Y is a one-

to-one and surjective completely bounded map

such that T ∗ is a complete isometry. Then T

is a complete isometry.

Proof Follow proof of Banach space variant

(Dunford and Schwartz), but using operator

space duality. �

Theorem Let X be a closed subspace of a C∗-
algebra B. Let p ∈ B∗∗ be an open projection

such that pX⊥⊥ ⊂ X⊥⊥. Let I = {x ∈ X :

px = x}, and q = p⊥. Then qX is completely

isometric to X/I via the map x + I 7→ qx.
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Sketch of proof. If T is this map, by the

Lemma we need to show T ∗ c. isometric. That

T ∗ is isometric boils down to showing

‖ϕ + (qX)⊥‖ ≤ ‖ϕ(q·) + X⊥‖, ϕ ∈ (qZ)∗.

This is not hard to show using the hypothesis,

and taking a net in B increasing to q.

Similar argument at matrix level. �

What does this property mean:
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Classical version of last theorem: If X ⊂ C(K),

and closed E ⊂ K s.t. ... , then for f ∈ X with

|f | ≤ 1 on E, and given ε > 0, there is a g ∈ X

with g = f on E, and |g| ≤ 1 + ε on K.

Replacing X by Xp−1 for a strictly positive

function p ∈ C(K), and applying the above

gives:

Corollary (Same assumptions). For strictly

positive function p and for f ∈ X with |f | ≤ p

on E, and given ε > 0, there is a g ∈ X with

g = f on E, and |g| ≤ p + ε on K.

Build the interpolation theory from here...
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‘NC peak interpolation’ results:

Proposition (Hay) Let A be a unital subspace

of B. Suppose q ∈ A∗∗ is a closed projection.

Let p be a strictly positive element in B and

let a ∈ A such that a∗qa ≤ p. Then, for every

ε > 0, there exists b ∈ A satisfying qb = qa,

such that b∗b ≤ p + ε.

Theorem (B, Hay, Neal) Let A be a unital-

subalgebra of C∗-algebra B and let q ∈ B∗∗ be

a closed projection. Then q is a p-projection

for A iff for any open projection u ≥ q, and any

ε > 0, there exists an a ∈ Ball(A) with aq = q

and ‖a(1− u)‖ < ε and ‖(1− u)a‖ < ε.
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Definition. An approximate p-projection is

a closed projection which lies in A⊥⊥.

Still open: approximate p-projections are just

the p-projections.

Theorem (Hay) If A is a unital subalgebra

of B and q ∈ B∗∗ is a closed projection, then

TFAE:

(i) q is an approximate p-projection,

(ii) given ε > 0, for each open u ≥ q, there

exists a ∈ A such that ‖a‖ ≤ 1 + ε, qa = q

and ‖a(1− u)‖ ≤ ε, and

(iii) given ε > 0, for every strictly positive p ∈ B

with p ≥ q, there exists a ∈ A such that

qa = q and a∗a ≤ p + ε.
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Applications given in IWOTA talk!!!


