Math 3321
 Separable Differential Equations

University of Houston

Lecture 04

Outline

(1) Separable Equations
(2) Solution Method for Separable Equations
(3) Examples of Solving Separable Equations

Separable Equations

Definition

A first order differential equation $y^{\prime}=f(x, y)$ is a separable equation if the function f can be seen as the product of a function of x and a function of y. This means we can factor f to write

$$
f(x, y)=p(x) h(y)
$$

where p and h are continuous on some domain in the $x y$-plane.

Separable Equations

The solution method will be based on writing

$$
y^{\prime}=p(x) h(y)
$$

as

$$
\frac{1}{h(y)} y^{\prime}=p(x) .
$$

Letting $q(y)=\frac{1}{h(y)}$, we can write our equation as

$$
\begin{equation*}
q(y) y^{\prime}=p(x) \tag{1}
\end{equation*}
$$

Separable Equations

The solution method will be based on writing

$$
y^{\prime}=p(x) h(y)
$$

as

$$
\frac{1}{h(y)} y^{\prime}=p(x)
$$

Letting $q(y)=\frac{1}{h(y)}$, we can write our equation as

$$
\begin{equation*}
q(y) y^{\prime}=p(x) \tag{1}
\end{equation*}
$$

Possible Singular Solutions

Anytime we divide by a function, we must be careful about the possiblilty of division by 0 . In this case, we must be sure that $h(y) \neq 0$. If r is a real number such that $h(r)=0$, we may have $y \equiv r$ as a singular solution to the differential equation.

Separable Equations

When we write

$$
y^{\prime}=\frac{d y}{d x}
$$

which we are interpretting as "differential y " divided by "differential x ", we can write

$$
q(y) y^{\prime}=p(x)
$$

as

$$
q(y) \frac{d y}{d x}=p(x)
$$

Multiplying both sides by $d x$ gives us the equation

$$
q(y) d y=p(x) d x
$$

This is the inspiration for calling these separable differential equations.

Solution Method for Separable Equations

Solving $y^{\prime}=p(x) h(y)$:

Our steps are as follows:

1. Identify: Can we write the given equation in the form (1) If yes, do so. Emphasizing that $y=y(x)$, equation (1) is

$$
q(y(x)) y^{\prime}(x)=p(x)
$$

Solution Method for Separable Equations

Solving $y^{\prime}=p(x) h(y)$:

2. Integrate with respect to x :

$$
\int q(y(x)) y^{\prime}(x) d x=\int p(x) d x+C
$$

which can also be written

$$
\int q(y) d y=\int p(x) d x+C
$$

by setting $y=y(x)$ and $d y=y^{\prime}(x) d x$. Now, assume P to be an antiderivative for p and Q an antiderivative of q, then we have

$$
\begin{equation*}
Q(y)=P(x)+C . \tag{2}
\end{equation*}
$$

Solution Method for Separable Equations

Definition
Equation (2) defines a one-parameter family of curves called the integral curves of equation (1). In general, equation (2) defines y implicitly as a function of x. Such a family gives the general solution of (1). However, when Q is invertible, it is preferable to solve for y as a function of x explicitly.

Examples of Solving Separable Equations

1. $y^{\prime}=\frac{x-5}{y^{2}}$

Examples of Solving Separable Equations

1. $y^{\prime}=\frac{x-5}{y^{2}}$

$$
\begin{aligned}
y^{2} y^{\prime} & =(x-5) \\
\int y^{2} d y & =\int(x-5) d x \\
\frac{1}{3} y^{3} & =\frac{1}{2} x^{2}-5 x+C \\
y & =\sqrt[3]{\frac{3}{2} x^{2}-15 x+C}
\end{aligned}
$$

Examples of Solving Separable Equations

$$
\text { 2. } y^{\prime}=\frac{y-1}{x+3}
$$

Examples of Solving Separable Equations

2. $y^{\prime}=\frac{y-1}{x+3}$

We set aside the solution $y=1$. This may or may not be a singular solution. Under the assumption that $y \neq 1$, we have

$$
\begin{aligned}
\frac{y^{\prime}}{y-1} & =\frac{1}{x+3} \\
\int \frac{1}{y-1} d y & =\int \frac{1}{x+3} d x \\
\ln |y-1| & =\ln |x+3|+C \\
|y-1| & =e^{C}(x+3) \\
y-1 & =\tilde{C}(x+3) \\
y & =\tilde{C}(x+3)+1
\end{aligned}
$$

Note that $y=1$ is a particular solution not a singular one.

Examples of Solving Separable Equations

3. $y^{\prime}=\frac{x+3}{y-1}, y(-1)=4$

Examples of Solving Separable Equations

3. $y^{\prime}=\frac{x+3}{y-1}, y(-1)=4$

We first find the general solution of $y^{\prime}=\frac{x+3}{y-1}$

$$
\begin{aligned}
(y-1) y^{\prime} & =x+3 \\
\int(y-1) d y & =\int(x+3) d x \\
\frac{1}{2} y^{2}-y & =\frac{1}{2} x^{2}+3 x+C
\end{aligned}
$$

Note that y is only defined implicitly.
To find the particular solution, we set $x=-1, y=4$ into the equation.

$$
\begin{gathered}
\frac{1}{2} 16-4=\frac{1}{2}-3+C, \quad \Rightarrow C=\frac{13}{2} \\
\text { IVP Solution: } \frac{1}{2} y^{2}-y=\frac{1}{2} x^{2}+3 x+\frac{13}{2}
\end{gathered}
$$

Examples of Solving Separable Equations

4. $y^{\prime}=x y-y e^{x}$

Examples of Solving Separable Equations

$$
\text { 4. } y^{\prime}=x y-y e^{x}
$$

We first do variable separation on

$$
y^{\prime}=x y-y e^{x}=y\left(x-e^{x}\right)
$$

Under the assumption that $y \neq 0$, we write

$$
\begin{aligned}
\frac{y^{\prime}}{y} & =x-e^{x} \\
\int \frac{1}{y} d y & =\int\left(x-e^{x}\right) d x \\
\ln |y| & =\frac{x}{2}-e^{x}+C \\
|y| & =e^{\left(\frac{x}{2}-e^{x}+C\right)} \\
y & =\tilde{C} e^{\left(\frac{x}{2}-e^{x}\right)}
\end{aligned}
$$

Examples of Solving Separable Equations

$$
\text { 5. } y^{\prime}=\frac{x y^{2}-4 x}{x^{2}+4}
$$

Examples of Solving Separable Equations

$$
\text { 5. } y^{\prime}=\frac{x y^{2}-4 x}{x^{2}+4}
$$

We first do variable separation on

$$
y^{\prime}=\frac{x y^{2}-4 x}{x^{2}+4}=\frac{x\left(y^{2}-4\right)}{x^{2}+4}
$$

Under the assumption that $y \neq \pm 2$, we write

$$
\begin{aligned}
\frac{y^{\prime}}{y^{2}-4} & =\frac{x}{x^{2}+4} \\
\int \frac{1}{y^{2}-4} d y & =\int \frac{x}{x^{2}+4} d x \\
\int\left(\frac{1 / 4}{y-2}-\frac{1 / 4}{y+2}\right) d y & =\frac{1}{2} \ln \left(x^{2}+4\right)+C \\
\frac{1}{4} \ln \left|\frac{y-2}{y+2}\right| & =\frac{1}{2} \ln \left(x^{2}+4\right)+C
\end{aligned}
$$

We next exponentiate both sides

Examples of Solving Separable Equations

$$
\begin{aligned}
\frac{1}{4} \ln \left|\frac{y-2}{y+2}\right| & =\frac{1}{2} \ln \left(x^{2}+4\right)+C \\
\left|\frac{y-2}{y+2}\right|^{1 / 4} & =e^{C}\left(x^{2}+4\right)^{1 / 2} \\
\left|\frac{y-2}{y+2}\right| & =e^{4 C}\left(x^{2}+4\right)^{2} \\
\frac{y-2}{y+2} & =K\left(x^{2}+4\right)^{2} \\
y-2 & =(y+2) K\left(x^{2}+4\right)^{2}=y K\left(x^{2}+4\right)^{2}+2 K\left(x^{2}+4\right)^{2} \\
y-y K\left(x^{2}+4\right)^{2} & =2+2 K\left(x^{2}+4\right)^{2} \\
y & =\frac{2+2 K\left(x^{2}+4\right)^{2}}{1-K\left(x^{2}+4\right)^{2}}
\end{aligned}
$$

Note that $y=2$ is a particular solution, not a singular one; $y=-2$ is a singular solution.

