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Foundations

We have covered the two basic types of first order differential
equations. These are linear equations

y′ + p(x)y = q(x)

and separable equations
y′ = p(x)h(y).

There are other types of equations which are neither linear
nor separable which can be transformed into one of these
types of equations by a change of variable.
In this lecture we will look at two of these cases.
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Bernoulli Equations

Definition

A first order differential equation y′ = f(x, y) is a Bernoulli equation
when it can be expressed in the following form

y′ + p(x)y = q(x)yr (B)

where p and q are continuous functions on some interval I and r is a
real number such that r ̸= 0, 1.

Notice that equation (B) is very close to a linear equation. Further, the
restriction that r ̸= 0, 1, is due to the fact that when r = 0 we have a
linear equation and when r = 1 we have an equation which can be
treated as either linear or separable. We will use the substitution
v = y1−r to transform (B) into a linear equation.
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Bernoulli Equations

Remark. To show that

y′ + p(x)y = q(x)yr r ̸= 0, 1

is nonlinear, we can write the differential operator

L(y) = y′ + p(x)y − q(x)yr

For c ̸= 0, we have that

L(cy) = cy′ + cp(x)y − crq(x)yr = c(y′ + p(x)y − cr−1q(x)yr)

That is,
L(cy) ̸= cL(y)

This shows linearity is not satisfied for r ̸= 0, 1.
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Solution Method for Bernoulli Equations

Solving y′ + p(x)y = q(x)yr where r ̸= 0, 1:

Our steps are as follows:

1. Identify: Can we write the given equation in the form (B):
y′ + p(x)y = q(x)yr? If yes, do so.

2. Multiply both sides of equation (B) by y−r to form

y−ry′ + p(x)y1−r = q(x). (1)
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Solution Method for Bernoulli Equations

Solving y′ + p(x)y = q(x)yr where r ̸= 0, 1:

3. We now let v = y1−r and observe the following:

v′ =
d

dx

(
y1−r

)
= (1− r)y−ry′

so that y−ry′ =
1

1− r
v′.

We can now substitute for y−ry′ and y1−r in (1) to get

1

1− r
v′ + p(x)v = q(x)

or
v′ + (1− r)p(x)v = (1− r)q(x).
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Solution Method for Bernoulli Equations

Solving y′ + p(x)y = q(x)yr where r ̸= 0, 1:

4. Notice that v′ + (1− r)p(x)v = (1− r)q(x) is a linear equation.
Now solve this equation using the solution method we have
previously established.

5. Find the general solution of (B) by substituting v = y1−r into the
solution from the previous step.
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Examples of Solving Bernoulli Equations

1. Find the solution of y′ − 4y = 2ex
√
y.

It is a Bernoulli equation with r = 1
2

Setting v = y1−r = y1/2, we obtain the linear ODE

v′ + (1− r)p(x)v = (1− r)q(x)

v′ − 2v = ex

We solve it using the method of the integrating factor where

u(x) = eh(x) = e
∫
2dx = e2x

Hence

v(x) = e−2x

∫
e2x ex dx+ Ce−2x

= e−2x 1

3
e3x + Ce−2x

=
1

3
ex + Ce−2x
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Examples of Solving Bernoulli Equations

We found

v(x) =
1

3
ex + Ce−2x

Since v = y1/2, then

y(x) =

(
1

3
ex + Ce−2x

)2
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Examples of Solving Bernoulli Equations

2. Find the solution of xy′ + y = 3x3y2.

We write it in standard form as

y′ +
1

x
y = 3x2y2.

It is a Bernoulli equation with r = 2
Setting v = y1−r = y−1, we obtain the linear ODE

v′ + (1− r)p(x)v = (1− r)q(x)

v′ − 1

x
v = −3x2

We solve it using the method of the integrating factor where

u(x) = eh(x) = e
∫
(−1/x)dx =

1

x
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Examples of Solving Bernoulli Equations

Hence, multiplying by the integrating factor

1

x
v′ − 1

x2
v =

(v
x

)′
= −3x

Hence

v

x
= −3

2
x2 + C

v = −3

2
x3 + Cx

It follows from v = y−1 that

y = (−3

2
x3 + Cx)−1.
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Examples of Solving Bernoulli Equations

3. Find the solution of y′ − 1

x
y = 2xy3.

It is a Bernoulli equation with r = 3
Setting v = y1−r = y−2, we obtain the linear ODE

v′ + (1− r)p(x)v = (1− r)q(x)

v′ +
2

x
v = −4x

We solve it using the method of the integrating factor where

u(x) = eh(x) = e
∫
(2/x)dx = e2 lnx = x2
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Examples of Solving Bernoulli Equations

Hence, multiplying by the integrating factor

x2v′ + 2xv =
(
x2v

)′
= −4x3

Hence

x2v = −x4 + C

v = −x2 + Cx−2 =
C − x4

x2

It follows from v = y−2 that

y2 =
x2

C − x4
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Homogeneous Equations

Definition

A first order differential equation y′ = f(x, y) is a homogeneous
equation if the function f has the following property:

f(λx, λy) = f(x, y) for every λ > 0.

The strategy for solving these equations will be based on using the

substitution v =
y

x
, which means y = vx. Using the property, we will

can now say
f(x, y) = f(x, xv) = f(1, v)

which will be a key fact in our solution method.
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Solution Method for Homeogeneous Equations

Solving y′ = f(x, y) where f(λx, λy) = f(x, y) for every λ > 0:

Our steps are as follows:

1. Introduce a new dependent variable v by using the substition
y = vx. Take the derivative of both sides of this substitution
equation with respect to x using the product rule. This gives

y′ = v + xv′.
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Solution Method for Homeogeneous Equations

Solving y′ = f(x, y) where f(λx, λy) = f(x, y) for every λ > 0:

2. Now we can substitute into the differential equation so that

y′ = f(x, y)

becomes
v + xv′ = f(x, y) = f(1, v).

Now solve for v′ to find

v′ =
f(1, v)− v

x
.

This is a separable equation, allowing us to write

1

f(1, v)− v
dv =

1

x
dx.
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Solution Method for Homeogeneous Equations

Solving y′ = f(x, y) where f(λx, λy) = f(x, y) for every λ > 0:

3. Now integrate both sides to find the general solution of the
separable equation from Step (2) in terms of v.

4. Find the general solution to the original equation by replacing v

with
y

x
.
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Examples of Solving Homeogeneous Equations

1. Show that the given equation is homogeneous and find the general

solution: y′ =
x2 + y2

2xy

= f(x, y)

We first show homogeneity:

f(λx, λy) =
λ2x2 + λ2y2

2λxλy

=
λ2(x2 + y2)

λ22xy

=
(x2 + y2)

2xy

= f(x, y)
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Examples of Solving Homeogeneous Equations

For the solution, we set y = vx. Hence

v′ = f(1,v)−v
x

=
(1+v2)

2v − v

x

=
1 + v2 − 2v2

2vx

=
1− v2

2vx

Under the assumption v ̸= ±1, this gives the separable ODE:

2 v v′

1− v2
=

1

x
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Examples of Solving Homeogeneous Equations

We solve the separable ODE

∫
2 v

1−v2
dv =

∫
1
x dx

− ln |1− v2| = ln |x|+ C

ln |1− v2|−1 = ln |x|+ C

(1− v2)−1 = k x

(1− v2) = k̃ x−1

v2 = 1− k̃ x−1

Since y = vx, then
y2x−2 = 1− k̃ x−1

hence
y2 = x2 − k̃ x

By direct substitution, y = ±x is a solution.
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Examples of Solving Homeogeneous Equations

2. Show that the given equation is homogeneous and find the general

solution: y′ =
x2ey/x + xy

x2

= f(x, y)

Direct calculation show that f(λx, λy) = f(x, y)
For the solution, we set y = vx. Hence

v′ = f(1,v)−v
x

=
ev+v
1 − v

x

=
ev

x

This gives the separable ODE:

e−v v′ =
1

x
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Examples of Solving Homeogeneous Equations

We solve the separable ODE

∫
e−v dv =

∫
1
x dx

−e−v = ln |x|+ C

e−v = − ln |x|+ C ′

−v = ln(C ′ − ln |x|)
v = ln( 1

C′−ln |x|)

Since y = vx, then
y = x ln( 1

C′−ln |x|)
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