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Orthogonal Trajectories

The family of circles (x− 1)2 + (y − 2)2 = C is the general solution for
an ODE. Find this ODE.

We can differentiate this equation with respect to x...
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Orthogonal Trajectories

Differentiating (x− 1)2 + (y − 2)2 = C
we get

2(x− 1) + 2(y − 2)y′ = 0

Hence

y′ = −2(x− 1)

2(y − 2)
= −x− 1

y − 2
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Orthogonal Trajectories

The family of lines y − 2 = K(x− 1) is the general solution for an
ODE. Find this ODE.

Claim: y′ = y−2
x−1

In fact, the lines are the solution of the separable ODE:

y′

y − 2
=

1

x− 1
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Orthogonal Trajectories

Show that the circles and lines are orthogonal (perpendicular).

If P (x0, y0) is a point of intersection of one of the circles and one of
the lines, their slopes are the negative reciprocal of each other.
This means the tangent lines are perpendicular:
tan(θ + π/2) = − cot(θ).
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Orthogonal Trajectories

Definitions

A curve which intersects each member of a given family of curves at
right angles (orthogonally) is called an orthogonal trajectory of the
family.

In general, when we have two one-parameter families of curves

F (x, y, C) = 0 and G(x, y,K) = 0

such that each member of one family is an orthogonal trajectory of the
other family, then the two families are said to be orthogonal
trajectories.
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Orthogonal Trajectories

Procedure for finding orthogonal trajectories:

Our steps are as follows:

1. Starting with the family F (x, y, C) = 0, find the differential
equation for this family.

2. Replace y′ in this equation with − 1

y′
. Now solve for y′ to find the

differential equation for the family of orthogonal trajectories.

3. Find the general solution for this new differential equation. This is
the family of orthogonal trajectories.
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Orthogonal Trajectories

Example:

1. Find the orthogonal trajectories of the family of parabolas with
vertical axis and vertex at the point (−1, 3).

An equation for this family of parabolas is

(y − 3) = K(x+ 1)2

We first calculate the differential equation for the family:

y′ = 2K(x− 1)

Hence:

K =
y′

2(x− 1)

We will next substitute this expression of K into the family of
parabolas.
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Orthogonal Trajectories

By substituting the expression of K into the family of parabolas:

(y − 3) =
y′

2(x− 1)
(x+ 1)2

which simplifies to
2(y − 3) = y′(x+ 1)

Therefore, the differential equation for the family of parabolas is

y′ =
2(y − 3)

(x+ 1)

To obtain the differential equation for the family of orthogonal
trajectories, we will take the negative reciprocal of this equation.
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Orthogonal Trajectories

By taking the negative reciprocal of the last equation, we obtain (I
apologize for the abuse of notation, I use the same symbol to denote the
reciprocal)

y′ = − (x+ 1)

2(y − 3)

We solve the separable ODE

2(y − 3)y′ = −(x− 1) ⇒
∫

2(y − 3)dy = −
∫
(x+ 1)dx

The solution is

(y − 3)2 = −1

2
(x+ 1)2 + C

or
1

2
(x+ 1)2 + (y − 3)2 = C

The orthogonal trajectories are ellipses with center at the point (−1, 3).
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Radioactive Decay

It is well known that the rate of decay of a radioactive material at time
t is proportional to the amount of material present at time t. Letting
A = A(t) be the amount at time t, we can express this relationship
mathematically as

dA

dt
= kA

where k, the proportionality constant, is negative.

This differential equation can be viewed as either separable or linear.
Solving this equation gives

A(t) = Cekt.

If A0 = A(0) is the amount at time 0, then C = A0 and our solution is

A(t) = A0e
kt.
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Radioactive Decay

Example: A certain radioactive material is decaying at a rate
proportional to the amount present. If a sample of 50 grams of the
material was present initially and after 2 hours the sample lost 10% of
its mass, find:

1. An expression for the mass of the material remaining at any time t.

Let A(t) denote the amount of material at time t. As we have
A(0) = 50 so radioactive decay equation is

A(t) = A(0)e−rt = 50e−rt

Next we use the information that the material lost 10% of its mass (=
5 grams) in 2 hours.
It follows that, at t = 2

A(2) = 50e−2r = 45 ⇒ e−2r =
45

50
= 0.9

Solving for r we get

−2r = ln(0.9) ⇒ r = −1
2 ln(0.9) = 0.0527
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Radioactive Decay

Solving for r we get

−2r = ln(0.9) ⇒ r = −1
2 ln(0.9) = 0.0527

Alternatively

−2r = ln(0.9) = ln(9/10) ⇒ r = −1
2 ln(9/10)

Thus we have

A(t) = 50e−rt = 50e−
t
2
ln(9/10) = 50

(
9
10

)t/2
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Radioactive Decay

2. The mass of the material after 4 hours.

We use the expression

A(t) = 50e−rt = 50e−
t
2
ln(9/10) = 50

(
9
10

)t/2
with t = 4:

A(4) = 50
(

9
10

)2
= 40.5
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Radioactive Decay

3. How long will it take for 75% of the material to decay?

If the material has lost 75% of its mass, then 25% (=12.5 grams)
remains.
Need to solve the following equation for t

50
(

9
10

)t/2
= 12.5 ⇒

(
9
10

)t/2
= 1

4

Hence

t =
2 ln(1/4)

ln(9/10)
= 26.3153
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Radioactive Decay

4. The half-life of the material.

The half-life T is given by equation

A(0)e−rT = A(0)
2

Hence

e−rT = 1
2 ⇒ T =

ln 2

r

The half-life of the material is

T =
ln 2

r
=

ln 2

0.0527
= 13.1527 hours
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Exponential Growth

Under ideal conditions, a population increases at a rate proportional to
the current size of the population. Letting P = P (t) be the population
at time t, we can express this relationship mathematically as

dP

dt
= kP

where k, the proportionality constant, is positive.

As in the case of radioactive decay, the solution can be expressed

P (t) = P0e
kt.

Note that continuously compounded interest can be modeled in the
same way.
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Exponential Growth

Example: In 1980 the world population was approximately 4.5 billion
and in the year 2000 it was approximately 6 billion. Assume that the
population increases at a rate proportional to the size of population.

1. Find the growth constant and give the world population at any
time t.

Let P(t) denote the world population at time t. Since P (1980) = 4.5
billion and P (2000) = 6 we have

P (t) = P (1980)ek(t−1980) = 4.5ek(t−1980)

P (2000) = 4.5ek20 = 6

Thus
ek20 = 4

3 ⇒ k = ln(4/3)
20 = 0.0144

and

P (t) = 4.5 e
ln(4/3)

20 (t−1980) = 4.5
(
4
3

) t−1980
20
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Exponential Growth

2. How long will it take for the world population to reach 9 billion
(double the 1980 population)?

The doubling time is

T =
ln 2

k
=

ln 2

0.0144
= 48.135
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Exponential Growth

3. The world population for 2002 was reported to be about 6.2
billion. What population does the formula in (1) predict for the
year 2002?

P (2002) = 4.5
(
4
3

)2002−1980
20 = 4.5

(
4
3

)22
20 = 6.175
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Exponential Growth

4. It is estimated that the arable land on earth can support a
maximum of 30 billion people. Extrapolate from the data above to
estimate the year when the food supply becomes insufficient to
support the world population.

We want to find the time tE such that P (tE) = 30.

P (tE) = 4.5
(
4
3

) tE−1980
20 = 30

Hence (
4
3

) tE−1980
20 = 30

4.5 = 20
3

Hence

tE = 1980 + 20
ln(203 )

ln(43)
= 2111.9
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Newton’s Law of Cooling/Heating

The rate of change of the temperature of an object at time t is
proportional to the difference between the temperature of the object
u = u(t) and the (constant) temperature σ of the surrounding medium
(e.g., air or water), called the ambient temperature.

du

dt
= −k(u− σ), k > 0 constant.
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Newton’s Law of Cooling/Heating

Mathematical Model:

The differential equation for the law of cooling or heating is given by
the differential equation

du

dt
= −k(u− σ), k > 0 constant.

Letting u(0) = u0 be the initial temperature we get the solution

u(t) = σ + [u0 − σ]e−kt.
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Newton’s Law of Cooling/Heating

Example: Suppose that a corpse is discovered at 10 p.m. and its
temperature is determined to be 85◦ F. Two hours later, its
temperature is 74◦ F. If the ambient temperature is 68◦ F, estimate the
time of death.

By Newton’s Law of Cooling,

u(t) = 68 + [u(t0)− 68]e−k(t−t0)

The two conditions imply that

u(10) = 68 + [u(t0)− 68]e−k(10−t0) = 85

u(12) = 68 + [u(t0)− 68]e−k(12−t0) = 74
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Newton’s Law of Cooling/Heating

Equivalently, we can write the two conditions as

[u(t0)− 68]e−k(10−t0) = 85− 68 = 17

[u(t0)− 68]e−k(12−t0) = 74− 68 = 6

By taking the ratio

ek(12−10) = 17
6 ⇒ e2k = 17

6

Hence
k = 1

2 ln(
17
6 ) = 0.521

Now we can use the fact that u(t0) = 98.6 to find the time of death t0.
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Newton’s Law of Cooling/Heating

Using k = 0.521, we use the equation

[98.6− 68]e−k(10−t0) = 17

to find an expression for t0

t0 − 10 =
1

k
ln( 17

98.6−68) = −1.128

The time of death was t0 = 10− 1.128 = 8.872

University of Houston Math 3321 Lecture 06 27 / 31



Other Models

Example: A disease is infecting a colony of 1000 penguins living on a
remote island. Let P (t) be the number of sick penguins t days after the
outbreak. Suppose that 50 penguins had the disease initially, 200 are
sick after two days, and suppose that the disease is spreading at a rate
proportional to the product of the time elapsed and the number of
penguins who do not have the disease.

1. Give the mathematical model (IVP) for P .

The rate of change in population of sick penguins, denoted as dP
dt is

proportional to the time t and the the number of penguins who do not
have the disease, that is (1000− P ).
Thus we can model the population as

dP

dt
= kt(1000− P )

We have an initial condition: P (0) = 50. Thus the IVP is

dP

dt
= kt(1000− P ), P (0) = 50
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Other Models

2. Find the general solution of the differential equation in part (1).

To find the general solution of P ′ = kt(1000− P ), we separate the
equation

1
1000−P dP = kt dt

− ln(1000− P ) = 1
2kt

2 + C

ln(1000− P ) = −1
2kt

2 + C

|1000− P | = eC e−
1
2kt

2

1000− P = Ke−
1
2kt

2

P (t) = 1000−Ke−
1
2kt

2
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Other Models

3. Find the particular solution that satisfies the initial condition.

We found the general solution

P (t) = 1000−Ke−
1
2kt

2

Using the IVP, we observe that

P (0) = 1000−K = 50

Thus K = 950 and the IVP solution is

P (t) = 1000− 950 e−
1
2kt

2
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Other Models

We can use the condition P (2) = 200 to find the value of k.
Using the expression into the IVP solution

P (t) = 1000− 950e−
1
2kt

2

Hence at t = 2 we get

P (2) = 1000− 950e−
1
2k2

2

= 1000− 950e−2k = 200

Thus

950e−2k = 800 ⇒ e−2k =
80

95

Thus
k = −1

2 ln(
80
95) = 0.086
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