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Basic Terminology

Second order differential equations can be written as

F (x, y′, y′′) = 0.

This chapter is concerned with a specific type of second order
equations. These are the second order linear equations.

Definition

A second order linear differential equation is an equation which can be
written in the form

y′′ + p(x)y′ + q(x)y = f(x) (1)

where p, q, and f are continuous functions on some interval I.

University of Houston Math 3321 Lecture 07 3 / 26



Basic Terminology

Definitions

Given a second order linear differential equation (1), we have the
following terminology. The functions p and q are called the coefficients
of the equation. The function f is called the forcing function or the
nonhomogeneous term.

Examples:

1. y′′ + 6y′ + 8y = e3x + cos(2x)

2. x2y′′ + 7xy′ + 8y = x2

3. x2y′′ + 3xy3y′ − y = ex
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Basic Terminology

Existence and Uniqueness

Given a second order linear equation (1). Let a be any point in the
interval I, and let α and β be any two real numbers. The IVP

y′′ + p(x)y′ + q(x)y = f(x), y(a) = α, y′(a) = β

has a unique solution.

Remark

Unlike the case of first order linear equations where we can always find
a solution, there is no general method for solving second (or higher)
order linear differential equations. There will be methods for solving
certain types of second order linear equations and these will be the
focus of this chapter.
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Basic Terminology

Definitions

The linear ODE (1) is homogeneous if the function f on the right side
of the equations is 0 for all x ∈ I. In this case, equation (1) becomes

y′′ + p(x)y′ + q(x)y = 0. (H)

The equation (1) is nonhomogeneous if f is not the zero function on I.

As we will see moving forward, most of our attention will be devoted to
solving homogeneous equations.
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Second Order Linear Homogeneous Equations

Terminology

The first thing we note about (H) is that the zero function y ≡ 0 is a
solution:

y ≡ 0 gives y′ ≡ 0 and y′′ ≡ 0,

therefore we have
0 + p(x)0 + q(x)0 = 0.

We call the zero function the trivial solution. Our interest is in finding
nontrivial solutions. Unless otherwise stated, the term “solution” will
mean “nontrivial solution.”
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Second Order Linear Homogeneous Equations

Theorem 1

Given any two solutions y = y1(x) and y = y2(x) for (H), then
u(x) = y1(x) + y2(x) is also a solution for (H).

Denote the ODE as a differential operator

L(y) = y′′ + p(x)y′ + q(x)y

As we have seen before, L is linear.
Hence

L(y1 + y2) = L(y1) + L(y2)

So,
L(y1) = 0 and L(y2) = 0 implies L(y1 + y2) = 0
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Second Order Linear Homogeneous Equations

Theorem 2

Given any solution y = y(x) for (H) and C a real number, then
u(x) = Cy(x) is also a solution for (H).

As above, denote the ODE as a differential operator

L(y) = y′′ + p(x)y′ + q(x)y

By the linearity of L,
L(Cy) = C L(y)

So,
L(y) = 0 implies L(Cy) = 0
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Second Order Linear Homogeneous Equations

Definition

Let f = f(x) and g = g(x) be functions defined on some interval I, and
let C1 and C2 be real numbers. We call the expression

C1f(x) + C2g(x)

a linear combination of f and g.

Theorem 3

Given any two solutions y = y1(x) and y = y2(x) for (H) as well as real
numbers C1 and C2, then

y(x) = C1y1(x) + C2y2(x)

is also a solution for (H).
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Second Order Linear Homogeneous Equations

Note

Theorem 3 tells us that any linear combination of solutions of (H) is
also a solution of (H).

Fact

The function y = C1y1(x) + C2y2(x) is the general solution to (H) if
and only if

y1(x)y
′
2(x)− y2(x)y

′
1(x) ̸= 0.
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Second Order Linear Homogeneous Equations

Definition

Let y = y1(x) and y = y2(x) be solutions of (H). The function W
defined by

W [y1, y2](x) = y1(x)y
′
2(x)− y2(x)y

′
1(x)

is called the Wronskian of y1 and y2.

We use the notation W [y1, y2](x) to emphasize that the Wronskian is a
function of x that is determined by two solutions y1, y2 of equation
(H). When there is no danger of confusion, we will shorten the
notation to W (x).

There is a short-hand way to represent the Wronskian of two solutions
of equation (H) using the determinant of a 2× 2 matrix. We will write

W (x) =

∣∣∣∣ y1(x) y2(x)
y′1(x) y′2(x)

∣∣∣∣ = y1(x)y
′
2(x)− y2(x)y

′
1(x).
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Second Order Linear Homogeneous Equations

Examples: Find the Wronskian for the following functions.

1. y1 = e3x and y2 = e−x

W (x) = y1(x)y
′
2(x)− y2(x)y

′
1(x)

= −e3xe−x − e−x3e3x = −4e2x

2. y1 = x3 and y2 = 5e3x

W (x) = y1(x)y
′
2(x)− y2(x)y

′
1(x)

= x3(15e3x)− 5e3x(3x2) = 15e3xx2(x− 1)
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Second Order Linear Homogeneous Equations

Examples: Find the Wronskian for the following functions.

3. y1 = x3 and y2 = 5x3

W (x) = y1(x)y
′
2(x)− y2(x)y

′
1(x)

= x3(15x2)− 5x3(3x2) = 15x5 − 15x5 = 0
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Second Order Linear Homogeneous Equations

Theorem 4

Let y = y1(x) and y = y2(x) be solutions of (H), and let W (x) be their
Wronskian. Exactly one of the following holds:

(i) W (x) = 0 for all x ∈ I and y1 is a constant multiple of y2 (or vice
versa).

(ii) W (x) ̸= 0 for all x ∈ I and y = C1y1(x) + C2y2(x) is the general
solution of (H).
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Second Order Linear Homogeneous Equations
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Second Order Linear Homogeneous Equations

Definitions

A pair of solutions y = y1(x) and y = y2(x) of equation (H) is a
fundamental set of solutions if

W [y1, y2](x) ̸= 0 for all x ∈ I.

A fundamental set of solutions is also called a solution basis.
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Second Order Linear Homogeneous Equations

Definitions

Given two functions f = f(x) and g = g(x) defined on an interval I, we
say that f and g are linearly dependent on I if there exists a number λ
such that g(x) = λf(x) for all x ∈ I. When the functions are not
linearly dependent, we say f and g are linearly independent.

Example 1. Consider the functions f(x) = 2x2, g(x) = −x2

Clearly, we have that

g(x) = −1
2f(x), for all x

This shows that f and g are linearly dependent.
Example 2. Consider the functions f(x) = 2x2, g(x) = x
Suppose that there is a λ ̸= 0 such that

g(x) = λf(x) ⇒ x = λ2x2 ⇒ x(1− 2λx) = 0

on an interval. This is false for any λ.
This shows that f and g are linearly independent.
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Second Order Linear Homogeneous Equations

Theorem 5

Let f = f(x) and g = g(x) be differentiable functions on an interval I.
If f and g are linearly dependent on I, then W (x) = 0 for all x ∈ I.

Equivalently, we can say:

Let f = f(x) and g = g(x) be differentiable functions on an interval I.
If W (x) ̸= 0 for at least one x ∈ I, then f and g are linearly
independent on I.
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Second Order Linear Homogeneous Equations

Theorem 4 Restated

Let y = y1(x) and y = y2(x) be solutions of (H), and let W (x) be their
Wronskian. Exactly one of the following holds:

(i) W (x) = 0 for all x ∈ I; y1 and y2 are linearly dependent.

(ii) W (x) ̸= 0 for all x ∈ I; y1 and y2 are linearly independent and
y = C1y1(x) + C2y2(x) is the general solution of (H).
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Examples

1. Verify that the given functions y1 and y2 are solutions of the given
differential equation. Do they constitute a fundamental set of
solutions of the equation?

y′′ − y′ − 6y = 0; y1 = e3x, y2 = e−2x

We have
y′1(x) = 3e3x, y′′1(x) = 9e3x

Hence
y′′1 − y′1 − 6y1 = 9e3x − 3e3x − 6e3x = 0

Similarly,
y′2(x) = −2e−2x, y′′2(x) = 4e−2x

Hence
y′′2 − y′2 − 6y2 = 4e−2x + 2e−2x − 6e−2x = 0
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Examples

Do they constitute a fundamental set of solutions of the equation?

W (x) = y1(x)y
′
2(x)− y2(x)y

′
1(x)

= e3x(−2)e−2x − e−2x3e3x = −5ex

Yes, they do form a fundamental set of solutions.
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Examples

2. Verify that the given functions y1 and y2 are solutions of the given
differential equation. Do they constitute a fundamental set of
solutions of the equation?

y′′ + 4y = 0; y1 = cos(2x), y2 = sin(2x)

We have
y′1(x) = −2 sin(2x), y′′1(x) = −4 cos(2x)

Hence
y′′1 + 4y1 = −4 cos(2x) + 4 cos(2x) = 0

Similarly,
y′2(x) = 2 cos(2x), y′′2(x) = −4 sin(2x)

Hence
y′′2 + 4y2 = −4 sin(2x) + 4 sin(2x) = 0
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Examples

3. Show that the given functions are linearly independent on an
interval I and find a second-order linear homogeneous equation
having the pair as a fundamental set of solutions.

y1 = e3x, y2 = e−x

Proof 1. y1 and y2 are linearly independent on an interval I if there is
no λ ̸= 0 such that y1(x) = λy2(x).
However, e3x = λe−x on an interval implies e4x = λ on an interval,
which is false.
Proof 2. We compote the Wronskian: W (x) = y1(x)y

′
2(x)− y2(x)y

′
1(x)

We find:
W (x) = −e3xe−x − e−x3e3x = −4e2x

Since W (x) ̸= 0 then the given functions are linearly independent on an
interval I.

University of Houston Math 3321 Lecture 07 25 / 26



Examples

3. Show that the given functions are linearly independent on an
interval I and find a second-order linear homogeneous equation
having the pair as a fundamental set of solutions.

y1 = e3x, y2 = e−x

Proof 1. y1 and y2 are linearly independent on an interval I if there is
no λ ̸= 0 such that y1(x) = λy2(x).
However, e3x = λe−x on an interval implies e4x = λ on an interval,
which is false.

Proof 2. We compote the Wronskian: W (x) = y1(x)y
′
2(x)− y2(x)y

′
1(x)

We find:
W (x) = −e3xe−x − e−x3e3x = −4e2x

Since W (x) ̸= 0 then the given functions are linearly independent on an
interval I.

University of Houston Math 3321 Lecture 07 25 / 26



Examples

3. Show that the given functions are linearly independent on an
interval I and find a second-order linear homogeneous equation
having the pair as a fundamental set of solutions.

y1 = e3x, y2 = e−x

Proof 1. y1 and y2 are linearly independent on an interval I if there is
no λ ̸= 0 such that y1(x) = λy2(x).
However, e3x = λe−x on an interval implies e4x = λ on an interval,
which is false.
Proof 2. We compote the Wronskian: W (x) = y1(x)y

′
2(x)− y2(x)y

′
1(x)

We find:
W (x) = −e3xe−x − e−x3e3x = −4e2x

Since W (x) ̸= 0 then the given functions are linearly independent on an
interval I.

University of Houston Math 3321 Lecture 07 25 / 26



Examples

3. Show that the given functions are linearly independent on an
interval I and find a second-order linear homogeneous equation
having the pair as a fundamental set of solutions.

y1 = e3x, y2 = e−x

If the second-order linear homogeneous equation

y′′ + ay′ + by = 0

has 2 solutions of the form erx, then

r2erx + arerx + berx = 0

Hence it must be
r2 + ar + b = 0

with solutions r = 3,−1. Thus it must be

r2 + ar + b = (r − 3)(r + 1) = r2 − 2r − 3

Thus is must be y′′ − 2y′ − 3y = 0
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