# Math 3321 <br> Second Order Linear Nonhomogeneous Equations (Variation of Parameters) 

# University of Houston 

Lecture 09

## Outline

(1) Introduction
(2) General Results
(3) Variation of Parameters
(4) Examples

## Introduction

In this lecture, we will be focused on the general second order linear nonhomogeneous equation

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x) \tag{N}
\end{equation*}
$$

where $p, q$, and $f$ are continuous functions on some interval $I$.
We would like to determine the structure of solutions for ( N ) and we hope to develop a method for finding a solution for (N) using two linearly independent solutions of the corresponding homogeneous equation

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 . \tag{H}
\end{equation*}
$$

## Definition

There is a connection between $(\mathrm{N})$ and $(\mathrm{H})$. Given an equation of type $(\mathrm{N})$, the corresponding equation of form $(\mathrm{H})$ is called the reduced equation for equation ( N ) of homogeneous part of equation (N).

## General Results

## Theorem 1

Given any two solutions $z=z_{1}(x)$ and $z=z_{2}(x)$ for (N), then

$$
y(x)=z_{1}(x)-z_{2}(x)
$$

is a solution of the reduced equation (H).

## General Results

## Theorem 1

Given any two solutions $z=z_{1}(x)$ and $z=z_{2}(x)$ for (N), then

$$
y(x)=z_{1}(x)-z_{2}(x)
$$

is a solution of the reduced equation (H).
If $z=z_{1}(x)$ and $z=z_{2}(x)$ are solutions for $(N)$, then

$$
\begin{aligned}
& z_{1}^{\prime \prime}+p(x) z_{1}^{\prime}+q(x) z_{1}=f(x) \\
& z_{2}^{\prime \prime}+p(x) z_{2}^{\prime}+q(x) z_{2}=f(x)
\end{aligned}
$$

## General Results

## Theorem 1

Given any two solutions $z=z_{1}(x)$ and $z=z_{2}(x)$ for (N), then

$$
y(x)=z_{1}(x)-z_{2}(x)
$$

is a solution of the reduced equation (H).
If $z=z_{1}(x)$ and $z=z_{2}(x)$ are solutions for $(N)$, then

$$
\begin{aligned}
& z_{1}^{\prime \prime}+p(x) z_{1}^{\prime}+q(x) z_{1}=f(x) \\
& z_{2}^{\prime \prime}+p(x) z_{2}^{\prime}+q(x) z_{2}=f(x)
\end{aligned}
$$

Hence, by linearity, with $y(x)=z_{1}(x)-z_{2}(x)$ we have

$$
\begin{aligned}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y & =\left(z_{1}-z_{2}\right)^{\prime \prime}+p(x)\left(z_{1}-z_{2}\right)^{\prime}+q(x)\left(z_{1}-z_{2}\right) \\
& =z_{1}^{\prime \prime}+p(x) z_{1}^{\prime}+q(x) z_{1}-z_{2}^{\prime \prime}-p(x) z_{2}^{\prime}-q(x) z_{2}
\end{aligned}
$$

## General Results

## Theorem 1

Given any two solutions $z=z_{1}(x)$ and $z=z_{2}(x)$ for (N), then

$$
y(x)=z_{1}(x)-z_{2}(x)
$$

is a solution of the reduced equation (H).
If $z=z_{1}(x)$ and $z=z_{2}(x)$ are solutions for $(N)$, then

$$
\begin{aligned}
& z_{1}^{\prime \prime}+p(x) z_{1}^{\prime}+q(x) z_{1}=f(x) \\
& z_{2}^{\prime \prime}+p(x) z_{2}^{\prime}+q(x) z_{2}=f(x)
\end{aligned}
$$

Hence, by linearity, with $y(x)=z_{1}(x)-z_{2}(x)$ we have

$$
\begin{aligned}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y & =\left(z_{1}-z_{2}\right)^{\prime \prime}+p(x)\left(z_{1}-z_{2}\right)^{\prime}+q(x)\left(z_{1}-z_{2}\right) \\
& =z_{1}^{\prime \prime}+p(x) z_{1}^{\prime}+q(x) z_{1}-z_{2}^{\prime \prime}-p(x) z_{2}^{\prime}-q(x) z_{2} \\
& =f(x)-f(x)=0
\end{aligned}
$$

## General Results

## Theorem 2

Let $y=y_{1}(x)$ and $y=y_{2}(x)$ be linearly independent solutions of the reduced equation (H) and let $z=z(x)$ be a particular solution of $(\mathrm{N})$. If $u=u(x)$ is any solution of (N), then there exist constants $C_{1}$ and $C_{2}$ such that

$$
u(x)=C_{1} y_{1}(x)+C_{2} y_{2}(x)+z(x)
$$

## General Results

## Theorem 2

Let $y=y_{1}(x)$ and $y=y_{2}(x)$ be linearly independent solutions of the reduced equation (H) and let $z=z(x)$ be a particular solution of $(\mathrm{N})$. If $u=u(x)$ is any solution of (N), then there exist constants $C_{1}$ and $C_{2}$ such that

$$
u(x)=C_{1} y_{1}(x)+C_{2} y_{2}(x)+z(x) .
$$

Denote

$$
L(y)=y^{\prime \prime}+p(x) y^{\prime}+q(x) y
$$

By hypothesis,

$$
\begin{gathered}
L\left(C_{1} y_{1}+C_{2} y_{2}\right)=C_{1} L\left(y_{1}\right)+C_{2} L\left(y_{)}=0\right. \\
L(z)=f
\end{gathered}
$$

## General Results

## Theorem 2

Let $y=y_{1}(x)$ and $y=y_{2}(x)$ be linearly independent solutions of the reduced equation (H) and let $z=z(x)$ be a particular solution of $(\mathrm{N})$. If $u=u(x)$ is any solution of (N), then there exist constants $C_{1}$ and $C_{2}$ such that

$$
u(x)=C_{1} y_{1}(x)+C_{2} y_{2}(x)+z(x) .
$$

Denote

$$
L(y)=y^{\prime \prime}+p(x) y^{\prime}+q(x) y
$$

By hypothesis,

$$
\begin{gathered}
L\left(C_{1} y_{1}+C_{2} y_{2}\right)=C_{1} L\left(y_{1}\right)+C_{2} L\left(y_{)}=0\right. \\
L(z)=f
\end{gathered}
$$

Thus

$$
L(u)=L\left(C_{1} y_{1}+C_{2} y_{2}+z\right)=L\left(C_{1} y_{1}+C_{2} y_{2}\right)+L(z)=f
$$

## General Results

Theorem 2 tells us that when we have $y=y_{1}(x)$ and $y=y_{2}(x)$ are two linearly independent solutions for (H) and $z=z(x)$ is a particular solution of $(\mathrm{N})$, then all solutions of $(\mathrm{N})$ can be expressed as

$$
\begin{equation*}
y=C_{1} y_{1}(x)+C_{2} y_{2}(x)+z(x) \tag{1}
\end{equation*}
$$

That is, (1) is the general solution of equation (N):

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

## General Results

The next result is known as the superposition principle. It can be useful for finding particular solutions of nonhomogeneous equations.

## Theorem 3

Given the second order linear nonhomogeneous equation

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)+g(x) \tag{2}
\end{equation*}
$$

if $z=z_{f}(x)$ and $z=z_{g}(x)$ are particular solutions of

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x) \text { and } y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x),
$$

respectively, then $z(x)=z_{f}(x)+z_{g}(x)$ is a particular solution of (2).

## General Results

Justification of superposition principle:
As above, denote

$$
L(y)=y^{\prime \prime}+p(x) y^{\prime}+q(x) y
$$

By linearity, if

$$
L\left(z_{f}\right)=f \quad \text { and } \quad L\left(z_{g}\right)=g
$$

then

$$
L\left(z_{f}+z_{g}\right)=f+g
$$

## General Results

In general, if $z=z_{1}(x)$ is a particular solution of

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f_{1}(x),
$$

$z=z_{2}(x)$ is a particular solution of

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f_{2}(x),
$$

$z=z_{n}(x)$ is a particular solution of

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f_{n}(x),
$$

then $z=z_{1}(x)+z_{2}(x)+\cdots+z_{n}(x)$ is a particular solution of

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f_{1}(x)+f_{2}(x)+\cdots+f_{n}(x)
$$

## Variation of Parameters

Based on our work so far, to find a solution of ( N ) we need to find:
(i) a linearly independent pair of solutions $y_{1}, y_{2}$ of the reduced equation (H), and
(ii) a particular solution $z$ of (N).

Our first method for finding such a particular solution is the method of variation of parameters. We will use two linearly independent solutions of $(\mathrm{H})$ to construct a particular solution of $(\mathrm{N})$.

## Variation of Parameters

We start with $y_{1}(x)$ and $y_{2}(x)$, two linearly independent solutions of the reduced equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

This means $C_{1} y_{1}(x)+C_{2} y_{2}(x)$ will be the general solution of the reduced equation. We replace $C_{1}$ and $C_{2}$ with functions of $x$, to form

$$
z=u(x) y_{1}(x)+v(x) y_{2}(x) .
$$

We will impose two conditions on $u$ and $v$.
$\mathrm{C} 1: z=u y_{1}+v y_{2}$ solves $(\mathrm{N})$. That is,

$$
z^{\prime \prime}+p(x) z^{\prime}+q(x) z=f(x)
$$

C2: The second condition will help with our calculations. We require

$$
y_{1} u^{\prime}+y_{2} v^{\prime}=0 .
$$

## Variation of Parameters

## Method of Variation of Parameters

Starting with the differential equation (N), we find two linearly independent solutions $y_{1}(x)$ and $y_{2}(x)$ for the reduced equation $(\mathrm{H})$. Letting $W(x)=y_{1}(x) y_{2}^{\prime}(x)-y_{2}(x) y_{1}^{\prime}(x)$ denote the Wronskian of the pair of solutions, we will find a solution for ( N ) of the form

$$
z(x)=u(x) y_{1}(x)+v(x) y_{2}(x)
$$

where

$$
u^{\prime}=\frac{-y_{2} f}{W} \text { and } v^{\prime}=\frac{y_{1} f}{W}
$$

Then the general solution to $(\mathrm{N})$ will be

$$
y(x)=C_{1} y_{1}(x)+C_{2} y_{2}(x)+z(x) .
$$

## Examples

1. Given that $\left\{y_{1}(x)=x^{2}, y_{2}(x)=x^{4}\right\}$ is a fundamental set of solutions of the reduced equation, find the general solution of

$$
y^{\prime \prime}-\frac{5}{x} y^{\prime}+\frac{8}{x^{2}} y=4 x^{3}
$$

## Examples

1. Given that $\left\{y_{1}(x)=x^{2}, y_{2}(x)=x^{4}\right\}$ is a fundamental set of solutions of the reduced equation, find the general solution of

$$
y^{\prime \prime}-\frac{5}{x} y^{\prime}+\frac{8}{x^{2}} y=4 x^{3}
$$

We compute the Wronskian:

$$
W(x)=y_{1}(x) y_{2}^{\prime}(x)-y_{2}(x) y_{1}^{\prime}(x)=x^{2}\left(4 x^{3}\right)-x^{4}(2 x)=2 x^{5}
$$

## Examples

1. Given that $\left\{y_{1}(x)=x^{2}, y_{2}(x)=x^{4}\right\}$ is a fundamental set of solutions of the reduced equation, find the general solution of

$$
y^{\prime \prime}-\frac{5}{x} y^{\prime}+\frac{8}{x^{2}} y=4 x^{3}
$$

We compute the Wronskian:

$$
W(x)=y_{1}(x) y_{2}^{\prime}(x)-y_{2}(x) y_{1}^{\prime}(x)=x^{2}\left(4 x^{3}\right)-x^{4}(2 x)=2 x^{5}
$$

By the method of variation of parameters, a particular solution is

$$
z(x)=u(x) x^{2}+v(x) x^{4}
$$

where

$$
u^{\prime}=\frac{-y_{2} f}{W} \text { and } v^{\prime}=\frac{y_{1} f}{W}
$$

## Examples

We compute

$$
\begin{aligned}
u(x)=\int \frac{-y_{2}(x) f(x)}{W(x)} d x & =\int \frac{-x^{4}\left(4 x^{3}\right)}{2 x^{5}} d x \\
& =-\int 2 x^{2} d x=-\frac{2}{3} x^{3} \\
v(x)=\int \frac{y_{1}(x) f(x)}{W(x)} d x & =\int \frac{x^{2}\left(4 x^{3}\right)}{2 x^{5}} d x \\
& =\int 2 d x=2 x
\end{aligned}
$$

## Examples

We compute

$$
\begin{aligned}
u(x)=\int \frac{-y_{2}(x) f(x)}{W(x)} d x & =\int \frac{-x^{4}\left(4 x^{3}\right)}{2 x^{5}} d x \\
& =-\int 2 x^{2} d x=-\frac{2}{3} x^{3} \\
v(x)=\int \frac{y_{1}(x) f(x)}{W(x)} d x & =\int \frac{x^{2}\left(4 x^{3}\right)}{2 x^{5}} d x \\
& =\int 2 d x=2 x
\end{aligned}
$$

Hence

$$
z(x)=u(x) x^{2}+v(x) x^{4}=-\frac{2}{3} x^{3}\left(x^{2}\right)+2 x\left(x^{4}\right)=\frac{4}{3} x^{5}
$$

## Examples

We compute

$$
\begin{aligned}
u(x)=\int \frac{-y_{2}(x) f(x)}{W(x)} d x & =\int \frac{-x^{4}\left(4 x^{3}\right)}{2 x^{5}} d x \\
& =-\int 2 x^{2} d x=-\frac{2}{3} x^{3} \\
v(x)=\int \frac{y_{1}(x) f(x)}{W(x)} d x & =\int \frac{x^{2}\left(4 x^{3}\right)}{2 x^{5}} d x \\
& =\int 2 d x=2 x
\end{aligned}
$$

Hence

$$
z(x)=u(x) x^{2}+v(x) x^{4}=-\frac{2}{3} x^{3}\left(x^{2}\right)+2 x\left(x^{4}\right)=\frac{4}{3} x^{5}
$$

The general solution is

$$
y(x)=c_{1} x^{2}+c_{2} x^{4}+\frac{4}{3} x^{5}
$$

## Examples

2. Find the general solution of

$$
y^{\prime \prime}+y^{\prime}-6 y=3 e^{2 x} .
$$

## Examples

2. Find the general solution of

$$
y^{\prime \prime}+y^{\prime}-6 y=3 e^{2 x}
$$

We first find the solution of the homogeneous system by solving the characteristic equation

$$
r^{2}+r-6=0 \Rightarrow r=-3, r=2
$$

Hence the function

$$
y_{1}(x)=e^{-3 x}, \quad y_{2}(x)=e^{2 x}
$$

are independent solutions of the homogeneous system

## Examples

To find a particular solution, we compute the Wronskian:

$$
\left.W(x)=y_{1}(x) y_{2}^{\prime}(x)-y_{2}(x) y_{1}^{\prime}(x)=e^{-3 x} 2 e^{2 x}-e^{2 x}\left(-3 e^{-3 x}\right)\right)=5 e^{-x}
$$

## Examples

To find a particular solution, we compute the Wronskian:

$$
\left.W(x)=y_{1}(x) y_{2}^{\prime}(x)-y_{2}(x) y_{1}^{\prime}(x)=e^{-3 x} 2 e^{2 x}-e^{2 x}\left(-3 e^{-3 x}\right)\right)=5 e^{-x}
$$

By the method of variation of parameters, a particular solution is

$$
z(x)=u(x) e^{-3 x}+v(x) e^{2 x}
$$

where

$$
u^{\prime}=\frac{-y_{2} f}{W} \text { and } v^{\prime}=\frac{y_{1} f}{W}
$$

## Examples

We compute

$$
\begin{aligned}
u(x)=\int \frac{-y_{2}(x) f(x)}{W(x)} d x & =\int \frac{-e^{2 x}\left(3 e^{2 x}\right)}{5 e^{-x}} d x \\
& =-\frac{3}{5} \int e^{5 x} d x=-\frac{3}{25} e^{5 x} \\
v(x)=\int \frac{y_{1}(x) f(x)}{W(x)} d x & =\int \frac{e^{-3 x}\left(3 e^{2 x}\right)}{5 e^{-x}} d x \\
& =\int \frac{3}{5} d x=\frac{3}{5} x
\end{aligned}
$$

## Examples

We compute

$$
\begin{aligned}
u(x)=\int \frac{-y_{2}(x) f(x)}{W(x)} d x & =\int \frac{-e^{2 x}\left(3 e^{2 x}\right)}{5 e^{-x}} d x \\
& =-\frac{3}{5} \int e^{5 x} d x=-\frac{3}{25} e^{5 x} \\
v(x)=\int \frac{y_{1}(x) f(x)}{W(x)} d x & =\int \frac{e^{-3 x}\left(3 e^{2 x}\right)}{5 e^{-x}} d x \\
& =\int \frac{3}{5} d x=\frac{3}{5} x
\end{aligned}
$$

Hence

$$
z(x)=u(x) e^{-3 x}+v(x) e^{2 x}=-\frac{3}{25} e^{5 x} e^{-3 x}+\frac{3}{5} x e^{2 x}=\frac{3}{5}\left(x-\frac{1}{5}\right) e^{2 x}
$$

## Examples

We compute

$$
\begin{aligned}
u(x)=\int \frac{-y_{2}(x) f(x)}{W(x)} d x & =\int \frac{-e^{2 x}\left(3 e^{2 x}\right)}{5 e^{-x}} d x \\
& =-\frac{3}{5} \int e^{5 x} d x=-\frac{3}{25} e^{5 x} \\
v(x)=\int \frac{y_{1}(x) f(x)}{W(x)} d x & =\int \frac{e^{-3 x}\left(3 e^{2 x}\right)}{5 e^{-x}} d x \\
& =\int \frac{3}{5} d x=\frac{3}{5} x
\end{aligned}
$$

Hence

$$
z(x)=u(x) e^{-3 x}+v(x) e^{2 x}=-\frac{3}{25} e^{5 x} e^{-3 x}+\frac{3}{5} x e^{2 x}=\frac{3}{5}\left(x-\frac{1}{5}\right) e^{2 x}
$$

The general solution is

$$
y(x)=c_{1} e^{-3 x}+c_{2} e^{2 x}+\frac{3}{5}\left(x-\frac{1}{5}\right) e^{2 x}
$$

## Examples

3. Find the general solution of

$$
y^{\prime \prime}+9 y=\tan (3 x)
$$

## Examples

3. Find the general solution of

$$
y^{\prime \prime}+9 y=\tan (3 x)
$$

We first find the solution of the homogeneous system by solving the characteristic equation

$$
r^{2}+9=0 \Rightarrow r= \pm 3 i
$$

Hence the function

$$
y_{1}(x)=\cos (3 x), \quad y_{2}(x)=\sin (3 x)
$$

are independent solutions of the homogeneous system

## Examples

To find a particular solution, we compute the Wronskian:

$$
W(x)=y_{1}(x) y_{2}^{\prime}(x)-y_{2}(x) y_{1}^{\prime}(x)=3 \cos (3 x) \cos (3 x)+3 \sin (3 x) \sin (3 x)=3
$$

## Examples

To find a particular solution, we compute the Wronskian:

$$
W(x)=y_{1}(x) y_{2}^{\prime}(x)-y_{2}(x) y_{1}^{\prime}(x)=3 \cos (3 x) \cos (3 x)+3 \sin (3 x) \sin (3 x)=3
$$

By the method of variation of parameters, a particular solution is

$$
z(x)=u(x) \cos (3 x)+v(x) \sin (3 x)
$$

where

$$
u^{\prime}=\frac{-y_{2} f}{W} \text { and } v^{\prime}=\frac{y_{1} f}{W}
$$

## Examples

We compute

$$
\begin{aligned}
u(x)=\int \frac{-y_{2}(x) f(x)}{W(x)} d x & =\int \frac{-\sin (3 x) \tan (3 x)}{3} d x \\
& =\int \frac{-\sin ^{2}(3 x)}{3 \cos (3 x)} d x \\
& =\int \frac{\cos ^{2}(3 x)-1}{3 \cos (3 x)} d x \\
& =\frac{1}{3} \int(\cos (3 x)-\sec (3 x)) d x \\
& =\frac{1}{9} \sin (3 x)-\frac{1}{9} \ln |\sec (3 x)+\tan (3 x)| \\
v(x)=\int \frac{y_{1}(x) f(x)}{W(x)} d x & =\int \frac{\cos (3 x) \tan (3 x)}{3} d x \\
& =\frac{1}{3} \int \sin (3 x) d x=-\frac{1}{9} \cos (3 x)
\end{aligned}
$$

## Examples

## Hence

$$
\begin{aligned}
& z(x) \\
= & u(x) \cos (3 x)+v(x) \sin (3 x) \\
= & \frac{1}{9} \sin (3 x) \cos (3 x)-\frac{1}{9} \ln |\sec (3 x)+\tan (3 x)| \cos (3 x)-\frac{1}{9} \cos (3 x) \sin (3 x) \\
= & -\frac{1}{9} \cos (3 x) \ln |\sec (3 x)+\tan (3 x)|
\end{aligned}
$$

## Examples

## Hence

$$
\begin{aligned}
& z(x) \\
= & u(x) \cos (3 x)+v(x) \sin (3 x) \\
= & \frac{1}{9} \sin (3 x) \cos (3 x)-\frac{1}{9} \ln |\sec (3 x)+\tan (3 x)| \cos (3 x)-\frac{1}{9} \cos (3 x) \sin (3 x) \\
= & -\frac{1}{9} \cos (3 x) \ln |\sec (3 x)+\tan (3 x)|
\end{aligned}
$$

The general solution is

$$
y(x)=c_{1} \cos (3 x)+c_{2} \sin (3 x)-\frac{1}{9} \cos (3 x) \ln |\sec (3 x)+\tan (3 x)|
$$

