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Introduction

So far, we have studied first order linear equations

y′ + p(x)y = q(x)

and second order linear equations

y′′ + p(x)y′ + q(x)y = f(x).

Here we will continue with higher order linear differential equations.

Definitions

An nth-order linear differential equation is an equation which can be
written in the form

y(n) + pn−1(x)y
(n−1) + · · ·+ p1(x)y

′ + p0(x)y = f(x) (N)

where p0, p1, . . . , pn−1, and f are continuous functions on some interval
I. Once again, the functions p0, p1, . . . , pn−1, are called the coefficients
and f is the forcing function or the nonhomogeneous term.
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Introduction

Definitions

Equation (N) is homogeneous if the function f on the right side is 0 for
all x ∈ I. In this case, (N) becomes

y(n) + pn−1(x)y
(n−1) + · · ·+ p1(x)y

′ + p0(x)y = 0. (H)

When f is not the zero function on I, we say that equation (N) is
nonhomogeneous.

Remark: Linearity

Our intuitive understanding is that an nth-order differential equation is
linear when y and its derivatives appear in the equation with
exponent 1 only, and there are no “cross-product” terms such as yy′.
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Introduction

Just as in the second order case, it is often convenient to emphasize
that the left hand side of (N) can be viewed as a linear differential
operator. This is the explanation for the name linear differential
equation.

Letting

L[y] = y(n) + pn−1(x)y
(n−1) + · · ·+ p1(x)y

′ + p0(x)y,

we can write (N) as
L[y] = f(x)

and (H) becomes
L[y] = 0.
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Introduction

Theorem 1: Existence and Uniqueness Theorem

Given the nth-order linear equation (N). Let a be any point on the
interval I, and let a0, a1, . . . , an−1 be any n real numbers. Then the
initial-value problem

y(n) + pn−1(x)y
(n−1) + · · ·+ p1(x)y

′ + p0(x)y = f(x);

y(a) = a0, y
′(a) = a1, . . . , y

(n−1)(a) = an−1

has a unique solution.

As stated when we introduced second order linear differential
equations, there is no general method for solving second or higher order
linear differential equations. However, there are methods for certain
cases which we will discuss in this lecture.
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Homogeneous Equations

Terminology

As in the second order case, we emphasize that (H)

y(n) + pn−1(x)y
(n−1) + · · ·+ p1(x)y

′ + p0(x)y = 0

is solved by the zero function y ≡ 0. We call the zero function the
trivial solution. Our interest will be in finding nontrivial solutions.
Unless otherwise stated, when we use the term solution we will assume
this means nontrivial solution.
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Homogeneous Equations

Theorem 2

Given any solution y = y(x) for (H) and C a real number, then
u(x) = Cy(x) is also a solution for (H).

Theorem 3

Given any two solutions y = y1(x) and y = y2(x) for (H), then
u(x) = y1(x) + y2(x) is also a solution for (H).

Theorem 4

If y = y1(x), y = y2(x), . . . , y = yk(x) are solutions of (H) and
C1, C2, . . . , Ck real numbers, then

y(x) = C1y1(x) + C2y2(x) + · · ·+ Ckyk(x)

is also a solution for (H).
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Homogeneous Equations

When k = n above, we get

y(x) = C1y1(x) + C2y2(x) + · · ·+ Cnyn(x) (1)

which has the form of the general solution for (H).

We are interested in knowing when (1) will be the general solution for
(H).
As in the second order case, this will depend on the relationship
between the solutions y1, y2, . . . , yn.
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Homogeneous Equations

Definition

Let y = y1(x), y = y2(x), . . . , y = yn(x) be solutions for (H). Then

W (x) =

∣∣∣∣∣∣∣∣∣∣∣

y1(x) y2(x) . . . yn(x)
y′1(x) y′2(x) . . . y′n(x)
y′′1(x) y′′2(x) . . . y′′n(x)

...
...

. . .
...

y
(n−1)
1 (x) y

(n−1)
2 (x) . . . y

(n−1)
n (x)

∣∣∣∣∣∣∣∣∣∣∣
is the Wronskian of the solutions y1, y2, . . . , yn.
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Homogeneous Equations

Theorem 5

Let y = y1(x), y = y2(x), . . . , y = yn(x) be solutions of (H), and let
W (x) be their Wronskian. Exactly one of the following holds:

(i) W (x) = 0 for all x ∈ I and y1, y2, . . . , yn are linearly dependent.

(ii) W (x) ̸= 0 for all x ∈ I which implies y1, y2, . . . , yn are linearly
independent and y(x) = C1y1(x) + C2y2(x) + · · ·+ Cnyn(x) is the
general solution of (H).

Definition

A set {y = y1(x), y = y2(x), . . . , y = yn(x)} of n linearly independent
solutions of (H) is called a fundamental set of solutions.

A set of solutions {y1, y2, . . . , yn} of (H) is a fundamental set if and
only if

W [y1, y2, . . . , yn](x) ̸= 0 for all x ∈ I.
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Homogeneous Equations with Constant Coefficients

Definition

An nth-order linear homogeneous differential equation with constant
coefficients is an equation which can be written in the form

y(n) + an−1y
(n−1) + · · ·+ a2y

′′ + a1y
′ + a0y = 0, (2)

where a0, a1, . . . , an−1 are real numbers.

Definitions

Given the differential equation (2), the corresponding polynomial
equation

p(r) = rn + an−1r
n−1 + · · ·+ a1r + a0 = 0 (3)

is called the characteristic equation of (2). The nth-degree polynomial
p(r) is the characteristic polynomial. Finally, the roots of the
equation/polynomial are known as the characteristic roots.
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Homogeneous Equations with Constant Coefficients

Linearly Independent Solutions for (2)

Building off of our prior work with second order equations, we have the
following cases for linearly independent solutions:

(1) If r1, r2, . . . , rk are distinct numbers (real or complex), then the
distinct exponential functions y1 = er1x, y2 = er2x, . . . , yk = erkx

are linearly independent.

(2) For any real number r, the functions y1 = erx, y2 = xerx, . . . ,
yk = xk−1erx are linearly independent.

(3) For any real numbers α and β, the functions y1(x) = eαx cos(βx),
y2(x) = eαx sin(βx), y3(x) = xeαx cos(βx),
y4(x) = xeαx sin(βx), . . . are linearly independent.

Moreover, the functions in one of the groups are independent of the
functions in the other groups.
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Homogeneous Equations with Constant Coefficients

Examples:

1. Find the general solution of y′′′ + 3y′′ − 6y′ − 8y = 0 if r = 2 is a
root of the characteristic polynomial.

We write the characteristic polynomial

p(r) = r3 + 3r2 − 6r − 8

we factor out the term (r − 2)

p(r) = r3 + 3r2 − 6r − 8 = (r − 2)(r2 + 5r + 4)

Hence the roots are r = 2, r = −1, r = −4 and the general solution is

y = C1e
−4x + C2e

−x + C3e
2x
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Homogeneous Equations with Constant Coefficients

2. Find the general solution of y(4) + 2y′′′ + 9y′′ − 2y′ − 10y = 0 if
r = −1 + 3i is a root of the characteristic polynomial.

We write the characteristic polynomial

p(r) = r4 + 2r3 + 9r2 − 2r − 10

Since r = −1 + 3i is a root, then r = −1− 3i is also a root, hence
(r + 1− 3i)(r + 1 + 3i) = r2 + 2r + 10 is a factor of the characteristic
polynomial. Thus we have

p(r) = (r2 + 2r + 10)(r2 − 1)

and the roots of the characteristic polynomial are
r = −1± 3i, r = 1, r = −1. The general solution is

y = C1e
−x cos(3x) + C2e

−x sin(3x) + C3e
−x + C4e

x
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Homogeneous Equations with Constant Coefficients

3. Find the general solution of y(4) − y′′′ − 7y′′ + 13y′ − 6y = 0 if
r = 1 is a root of the characteristic polynomial with multiplicity 2.

We write the characteristic polynomial

p(r) = r4 − r3 − 7r2 + 13r − 6

we factor out the term (r − 1)2

p(r) = (r − 1)2(r2 + r − 6)

Hence the roots are r = 1, r = 1, r = −3, r = 2 and the general solution
is

y = C1e
x + C2xe

x + C3e
2x + C4e

−3x
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Homogeneous Equations with Constant Coefficients

4. Find the homogeneous linear ODE with constant coefficients of
least order for which y = 2xe2x − 3e−2x + 4 cos(2x) + 10 is a
solution.

Since 2xe2x is a solution, r = 2 must be a repeated root
Since 3e−2x is a solution, r = −2 must be a root
Since 4 cos(2x) is a solution, r = ±2i must be complex conjugate roots
Since 10 = 10e0x is a solution, r = 0 must be a root
Hence we write the characteristic polynomial

p(r) = (r − 2)2(r + 2)(r2 + 4)r = r6 − 2r5 − 16r2 + 32r

Hence we have the homogeneous differential equation

y(6) − 2y(5) − 16y′′ + 32y′ = 0
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p(r) = (r − 2)2(r + 2)(r2 + 4)r = r6 − 2r5 − 16r2 + 32r

Hence we have the homogeneous differential equation

y(6) − 2y(5) − 16y′′ + 32y′ = 0
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Nonhomogeneous Equations

Theorem 6

Given any two solutions z = z1(x) and z = z2(x) for (N),

y(x) = z1(x)− z2(x)

is a solution of the reduced equation (H).
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Nonhomogeneous Equations

Theorem 7

Let {y = y1(x), y = y2(x), . . . , y = yn(x)} be a fundamental set of
solutions of the reduced equation (H) and let z = z(x) be a particular
solution of (N). If u = u(x) is any solution of (N), then there exist
constants C1, C2, . . . , Cn such that

u(x) = C1y1(x) + C2y2(x) + · · ·+ Cnyn(x) + z(x).

Theorem 7 tells us that when we have
y = y1(x), y = y2(x), . . . , y = yn(x) are linearly independent solutions
for (H) and z = z(x) is a particular solution of (N), then all solutions
of (N) can be expressed as

y = C1y1(x) + C2y2(x) + · · ·+ Cnyn(x) + z(x). (4)

That is, (4) is the general solution of equation (N).
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Nonhomogeneous Equations

The superposition principle also holds in the nth-order equation setting.

Theorem 8

Suppose z = zf (x) and z = zg(x) are particular solutions of

y(n) + pn−1(x)y
(n−1) + · · ·+ p1(x)y

′ + p0(x)y = f(x)

and
y(n) + pn−1(x)y

(n−1) + · · ·+ p1(x)y
′ + p0(x)y = g(x),

respectively, then z = zf (x) + zg(x) is a particular solution of

y(n) + pn−1(x)y
(n−1) + · · ·+ p1(x)y

′ + p0(x)y = f(x) + g(x).
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Finding a Particular Solution

The method of variation of parameters can be extended to nth-order
linear differential equations.
However, the calculations become quite difficult.

We will instead focus on cases where we can use the method of
undetermined coefficients. That is, we will restrict our focus to
equations of the form

y(n) + an−1y
(n−1) + · · ·+ a2y

′′ + a1y
′ + a0y = f(x)

where a0, a1, . . . , an−1 are real numbers and the nonhomogeneous term
f is a polynomial, an exponential function, a sine, a cosine, or a
suitable combination of such functions.

University of Houston Math 3321 Lecture 11 21 / 25



Finding a Particular Solution

The method of variation of parameters can be extended to nth-order
linear differential equations.
However, the calculations become quite difficult.
We will instead focus on cases where we can use the method of
undetermined coefficients. That is, we will restrict our focus to
equations of the form

y(n) + an−1y
(n−1) + · · ·+ a2y

′′ + a1y
′ + a0y = f(x)

where a0, a1, . . . , an−1 are real numbers and the nonhomogeneous term
f is a polynomial, an exponential function, a sine, a cosine, or a
suitable combination of such functions.

University of Houston Math 3321 Lecture 11 21 / 25



Finding a Particular Solution

Updating the basic table from our study of undetermined coefficients in
the second order case we find the following for an nth-order ODE.
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Finding a Particular Solution

Examples:

1. Give the form of a particular solution of

y(4) + 4y′′′ + 13y′′ + 36y′ + 36y = 5x2e2x + x sin(3x) + 6.

We first examine the homogeneous equation. The characteristic
polynomial can be factored as

p(r) = r4 + 4r3 + 13r2 + 36r + 36 = (r + 2)2(r2 + 9)

This implies that the functions A1e
−2x, A2xe

−2x, B1 cos(3x),
B2 sin(3x) are fundamental solutions of the homogeneous equation and,
thus, cannot be particular solutions.

It follows that the particular solution has the form

z = (C0 + C1x+ C2x
2)e2x +D1x cos(3x) +D2x sin(3x) + E
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Finding a Particular Solution

2. Find the general solution of

y′′′ + 3y′′ + 3y′ + y = 3e2x.

We first examine the homogeneous equation.
By substitution we see that r = −1 is a root of the characteristic
polynomial which can be factored as

p(r) = r3 + 3r2 + 3r + 1 = (r + 1)3

This implies that the homogeneous equation has general solution

yh = Ae−x +Bxe−x + Cx2e−x
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Finding a Particular Solution

We look for a particular solution has the form z = De2x. We have

z′ = 2De2x, z′′ = 4De2x, z′′′ = 8De2x

By substitution into the differential equation we obtain

8De2x + 12De2x + 6De2x +De2x = 3e2x

which simplifies to
27D = 3 ⇒ D = 1/9

Thus the general solution is

y = yh + z = Ae−x +Bxe−x + Cx2e−x + 1
9e

2x
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