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Introduction

In this lecture, we will consider an application of second order linear
differential equations.
Here we examine the motion of a spring of length l0, from which an
object of mass m is attached. When the mass is attached, the spring
extends to a length l1. If the object is puled down or pushed up an
additional y0 units at time t = 0 and then released, we are interested in
the resulting motion of the object. We wish to find the position of the
object at time t > 0 (t measured in seconds).
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Introduction

We will consider the problem in two cases.

(A) Free Vibrations in which the forces acting on the spring-mass
system are gravity and the restoring force of the spring. We will
then include a damping force such as friction.

(B) Forced Vibrations in which an additional external force is applied
to a freely vibrating system.
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Free Vibrations

We consider the forces acting on the object at time t > 0. We begin
with the downward force from gravity

F1 = mg.

The second force is the restoring force from the spring. Hooke’s Law
tells us this force is proportional to the displacement l1 + y(t) and acts
in the direction opposite the displacement. That is:

F2 = −k[l1 + y(t)] where k > 0.

Here, k is known as the spring constant.
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Undamped Free Vibrations

With undamped vibrations, we assume the forces F1 and F2 are the
only forces. That is, we assume the spring is frictionless and there is no
air resistence. Our force equation will be

F = mg − k[l1 + y(t)] = (mg − kl1)− ky(t)

Before the object was displaced, the system was in equilibrium, so it
must be

mg − kl1 = 0

Therefore, the total force F reduces to

F = −ky(t)

By Newton’s Second Law of Motion, F = ma, hence

ma = −ky(t) ⇒ a = y′′(t) = − k

m
y(t)
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Undamped Free Vibrations

Since k
m > 0, we introduce the notation ω2 = k

m and we write the last
expression as

y′′(t) + ω2y(t) = 0

This is the equation of simple harmonic motion.

It is a second order linear homogeneous equation with constant
coefficients whose characteristic equation is

r2 + ω2 = 0.

The characteristic roots are ±i, hence the general solution is

y(t) = C1 cos(ωt) + C2 sin(ωt).
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Undamped Free Vibrations

Simple Harmonic Motion

Our equation of motion is

y′′ + ω2y = 0, (1)

where ω =
√
k/m. We found the solution to be

y = C1 cos(ωt) + C2 sin(ωt).

We can rewrite this as

y = A sin(ωt+ ϕ),

where A > 0 and ϕ ∈ [0, 2π). Here, the constant ω is the natural
frequency of the system and A is the amplitude of the motion. The
number ϕ is the phase constant or phase shift.

University of Houston Math 3321 Lecture 12 8 / 36



Undamped Free Vibrations

Simple Harmonic Motion

Our equation of motion is

y′′ + ω2y = 0, (1)

where ω =
√
k/m. We found the solution to be

y = C1 cos(ωt) + C2 sin(ωt).

We can rewrite this as

y = A sin(ωt+ ϕ),

where A > 0 and ϕ ∈ [0, 2π). Here, the constant ω is the natural
frequency of the system and A is the amplitude of the motion. The
number ϕ is the phase constant or phase shift.

University of Houston Math 3321 Lecture 12 8 / 36



Undamped Free Vibrations

Below is a typical graph of a function y = A sin(ωt+ ϕ)
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Undamped Free Vibrations

Examples:

1. An object is in simple harmonic motion. Find an equation for the
motion given that the period is 2π

3 and at time t = 0, y = 1, and
y′ = 3. What is the function which models this motion?

Since the period is 2π
ω and this quantity is equal to 2π

3 , it follows that
ω = 3 Hence the equation of motion is of the form

y(t) = A sin(3t+ ϕ)

To determine A and ϕ, we use the fact that

1 = y(0) = A sin(ϕ), 3 = y′(0) = 3A cos(3t+ ϕ)|t=0 = 3A cos(ϕ)

which simplifies to

A sin(ϕ) = 1, A cos(ϕ) = 1
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Undamped Free Vibrations

Thus we have that

A2 sin2(ϕ) +A2 cos2(ϕ) = 2 ⇒ A2 = 2 ⇒ A =
√
2

Finally, to find ϕ, we use the observation that

√
2 sin(ϕ) = 1,

√
2 cos(ϕ) = 1 ⇒ sin(ϕ) = cos(ϕ) =

√
2
2

hence ϕ = π
4 . Thus, the equation of motion is

y(t) = 3 sin(3t+ π/4)
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Undamped Free Vibrations

2. An object is in simple harmonic motion. Find an equation for the
motion given that the frequency is 5

π and at time t = 0, y = 1, and
y′ = 0. What is the function which models this motion?

Since the period is 2π
ω and this quantity is equal to π

5 = 2π
10 , it follows

that ω = 10 Hence the equation of motion is of the form

y(t) = A sin(10t+ ϕ)

To determine A and ϕ, we use the fact that

1 = y(0) = A sin(ϕ), 0 = y′(0) = 10A cos(10t+ ϕ)|t=0 = 10A cos(ϕ)

which simplifies to

A sin(ϕ) = 1, cos(ϕ) = 0

Hence is must be ϕ = π/2 and A = 1.
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Damped Free Vibrations

We now introduce a damping force R, such as friction or air resistence.
A damping force resists the movement and experiments have shown
that R will be approximately proportional to the velocity v = y′ and
acts in the opposite direction relative to the motion. That is:

R = −cy′ with c > 0.

Our force equation is now

F = −ky − cy′

and our equation of motion is

y′′ +
c

m
y′ +

k

m
y = 0. (2)

This is the equation of motion in the presence of a damping
factor.
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Damped Free Vibrations

The characteristic equation is

r2 +
c

m
r +

k

m
= 0

and has roots

r =
−c±

√
c2 − 4km

2m

There are three cases to consider:

c2 − 4km < 0, c2 − 4km > 0, c2 − 4km = 0.
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Damped Free Vibrations

Case 1: c2 − 4km < 0

In this case, the characteristic equation has complex roots:

r1 = − c

2m
+ iω, r2 = − c

2m
− iω, where ω =

√
4km− c2

2m
.

Here the general solution is

y = e(−c/2m)t(C1 cos(ωt) + C2 sin(ωt))

which can also be written as

y = Ae(−c/2m)t sin(ωt+ ϕ) (3)

where A > 0 and ϕ ∈ [0, 2π). We call this the underdamped case.
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Damped Free Vibrations

Below is a typical graph of a function (3).
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Damped Free Vibrations

Case 2: c2 − 4km > 0

In this case, the characteristic equation has two distinct real roots:

r1 =
−c+

√
c2 − 4km

2m
, r2 =

−c−
√
c2 − 4km

2m
.

Here the general solution is

y = C1e
r1t + C2e

r2t. (4)

We call this the overdamped case.

University of Houston Math 3321 Lecture 12 17 / 36



Damped Free Vibrations

Case 2: c2 − 4km > 0

In this case, the characteristic equation has two distinct real roots:

r1 =
−c+

√
c2 − 4km

2m
, r2 =

−c−
√
c2 − 4km

2m
.

Here the general solution is

y = C1e
r1t + C2e

r2t. (4)

We call this the overdamped case.

University of Houston Math 3321 Lecture 12 17 / 36



Damped Free Vibrations

Case 3: c2 − 4km = 0

In this case, the characteristic equation has a single repeated root:

r = − c

2m
.

Here the general solution is

y = C1e
−(c/2m)t + C2te

−(c/2m)t. (5)

We call this the critically damped case.
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Damped Free Vibrations

Below we see graphs which represent potential solutions in the
overdamped and critically damped cases.
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Forced Vibrations

The motion we have studied thus far is the result of the interplay
between three forces: gravity, the restoring force of the spring, and the
resistence force of friction or the surrounding medium. These were free
vibrations.

We now apply an external force to our freely vibrating system and
study the resulting motion. We call these forced vibrations.
Throughout, we will consider the application of a periodic external
force of the form:

F0 cos(γt),

where F0 and γ are positive constants.
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Undamped Forced Vibrations

In an undamped system with an external force F0 cos(γt), the behavior
of our system will depend on the relationship between the applied
frequency γ and the natural frequency ω. Here our force equation will
be

F = −ky + F0 cos(γt).

Hence the equation of motion takes the form

y′′(t) +
k

m
y(t) =

F0

m
cos(γt)

By introducing the notation ω2 = k
m and above, we can write the last

equation as

y′′(t) + ω2y(t) =
F0

m
cos(γt)
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Undamped Forced Vibrations

Let us examine the second order linear nonhomogeneous differential
equation

y′′(t) + ω2y(t) =
F0

m
cos(γt)

By the properties of the particular solution of the differential equation,
it is clear that the nature of the motion depends on the relation
between the applied frequency γ and the natural frequency ω of the
system.

Namely, if the ω ̸= γ then the particular solution is of the form

yp = A cos(γt) +B sin(γt)

However, if the ω = γ then the particular solution is of the form

yp = At cos(γt) +Bt sin(γt)
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Undamped Forced Vibrations

Case 1: γ ̸= ω

Here our equation of motion will be

y′′ + ω2y = F0 cos(γt) (6)

where ω =
√
k/m. The method of undetermined coefficients will give a

particular solution

z =
F0

m(ω2 − γ2)
cos(γt)

and the general solution to our equation of motion is

y = A sin(ωt+ ϕ) +
F0

m(ω2 − γ2)
cos(γt). (7)
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Undamped Forced Vibrations

Below we see a graph of a potential solution in the case where ω
γ is

rational, in which case we see periodic motion.
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Undamped Forced Vibrations

Below we see a graph of a potential solution in the case where ω
γ is

irrational, in which case we see motion which is not periodic.
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Undamped Forced Vibrations

Case 2: γ = ω

Here our equation of motion will be

y′′ + ω2y =
F0

m
cos(ωt).

The method of undetermined coefficients will give a particular solution

z =
F0

2ωm
t sin(ωt)

and the general solution to our equation of motion is

y = A sin(ωt+ ϕ) +
F0

2ωm
t sin(ωt). (8)

The system is said to be in resonance. The motion will be oscillatory
but the amplitude will grow linearly without bound.
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Undamped Forced Vibrations

Below we see a graph of a potential solution (8). We see oscillatory
motion with an amplitude which grows linearly without bound.
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Damped Forced Vibrations

We introduce a damping force to our previous system of forced
vibrations. Our force equation will be

F = −ky − cy′ + F0 cos(γt).

Hence the equation that governs the motion is

my′′ = −cy′ − ky + F0 cos(γt)

Using again the notation ω2 = k/m, we can re-write it as

y′′ +
c

m
y′ + ω2y =

F0

m
cos(γt)
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Damped Forced Vibrations

By the method of undetermined coefficients, we know that a particular
solution of this equation will have the form

yp(t) = A cos(γt) +B sin(γt),

which can be written as yp(t) = C sin(γt+ ψ).

Applying the method of undetermined coefficients, we obtain

yp(t) =
F0√

m2(ω2 − γ2)2 + c2γ2
sin(γt+ ψ)
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Damped Forced Vibrations

Damped Forced Vibrations

Here our equation of motion will be

y′′ +
c

m
y′ +

k

m
y =

F0

m
cos(γt). (9)

The method of undetermined coefficients will give a particular solution
which we use to build the general solution to our equation of motion

y(t) = yc(t) +
F0√

m2(ω2 − γ2)2 + c2γ2
sin(γt+ ψ). (10)

Here yc(t) is the general solution of the reduced equaton of (9) which
we found in the damped free vibrations case. Recall, in all cases,

lim
t→∞

yc(t) = 0.
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Damped Forced Vibrations

Example:

1. Give the solution of the IVP below.

y′′ + y′ +
101

4
y = −200 cos(2t)− 4 sin(2t), y(0) = 4, y′(0) =

3

2

The characteristic equation of the homogeneous equation is

r2 + r + 101
2 = 0

and the roots are

r =
1−±1− 101

2
= 1

2 ± 5

Hence the general solution of the homogeneous equation is

yh(t) = C1e
−x/2 cos(5t) + C2e

−x/2 sin(5t)
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Damped Forced Vibrations

The particular solution is of the form

A cos(2t) +B sin(2t)

When we apply the method of undetermined coefficients we find A = 2
and B = 0. Hence we get the general solution

y = C1e
−x/2 cos(5t) + C2e

−x/2 sin(5t) + 2 cos(2t)

Imposing the initial conditions, we find C1 = 2, C2 = 1/2. Hence we
have the IVP solution

y = 2e−x/2 cos(5t) + 1
2e

−x/2 sin(5t) + 2 cos(2t)

University of Houston Math 3321 Lecture 12 32 / 36



Damped Forced Vibrations

The particular solution is of the form

A cos(2t) +B sin(2t)

When we apply the method of undetermined coefficients we find A = 2
and B = 0. Hence we get the general solution

y = C1e
−x/2 cos(5t) + C2e

−x/2 sin(5t) + 2 cos(2t)

Imposing the initial conditions, we find C1 = 2, C2 = 1/2. Hence we
have the IVP solution

y = 2e−x/2 cos(5t) + 1
2e

−x/2 sin(5t) + 2 cos(2t)

University of Houston Math 3321 Lecture 12 32 / 36



Damped Forced Vibrations

Below we see a graph of the transient solution

yc(t) = 2e−t/2 cos(5t) +
1

2
e−t/2 sin(5t).
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Damped Forced Vibrations

Below we see a graph of the steady state solution

z(t) = 2 cos(2t).
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Damped Forced Vibrations

Below we see a graph of the overall solution

y(t) = yc(t) + z(t) = 2e−t/2 cos(5t) +
1

2
e−t/2 sin(5t) + 2 cos(2t).
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Finally, we see the overall solution and the steady state solution
graphed together.
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