Math 3321
 Inverse Laplace Transforms and Initial-Value Problems

University of Houston

Lecture 14

Outline

(1) Introduction
(2) The Inverse Laplace Transform
(3) Solving Initial-Value Problems

Introduction

In the last lecture, we learned the definition and basic properties of the Laplace transform.
We applied the Laplace transform to the inital-value problem

$$
y^{\prime \prime}+a y^{\prime}+b y=f(x) ; y(0)=\alpha, y^{\prime}(0)=\beta .
$$

Introduction

In the last lecture, we learned the definition and basic properties of the Laplace transform.
We applied the Laplace transform to the inital-value problem

$$
y^{\prime \prime}+a y^{\prime}+b y=f(x) ; y(0)=\alpha, y^{\prime}(0)=\beta
$$

This enabled us to solve for the Laplace transform of the solution to the IVP:

$$
\mathcal{L}[y(x)]=Y(s)=\frac{F(s)}{s^{2}+a s+b}+\frac{\alpha s+\beta+a \alpha}{s^{2}+a s+b}
$$

where $F(s)=\mathcal{L}[f(x)]$ is the Laplace transform of f.

Introduction

Key Observation

We found the Laplace transform can be applied to y^{\prime} and $y^{\prime \prime}$, allowing us to express these in terms of $\mathcal{L}[y(x)]=Y(s)$ and given intial values:

$$
\mathcal{L}\left[y^{\prime}(x)\right]=s Y(s)-y(0)
$$

and

$$
\mathcal{L}\left[y^{\prime \prime}(x)\right]=s^{2} Y(s)-s y(0)-y^{\prime}(0) .
$$

Introduction

Key Observation

We found the Laplace transform can be applied to y^{\prime} and $y^{\prime \prime}$, allowing us to express these in terms of $\mathcal{L}[y(x)]=Y(s)$ and given intial values:

$$
\mathcal{L}\left[y^{\prime}(x)\right]=s Y(s)-y(0)
$$

and

$$
\mathcal{L}\left[y^{\prime \prime}(x)\right]=s^{2} Y(s)-s y(0)-y^{\prime}(0) .
$$

Once we solve for $Y(s)=\mathcal{L}[y(x)]$, we are left with the question:
How can we recover $y(x)$?

Introduction

Key Observation

We found the Laplace transform can be applied to y^{\prime} and $y^{\prime \prime}$, allowing us to express these in terms of $\mathcal{L}[y(x)]=Y(s)$ and given intial values:

$$
\mathcal{L}\left[y^{\prime}(x)\right]=s Y(s)-y(0)
$$

and

$$
\mathcal{L}\left[y^{\prime \prime}(x)\right]=s^{2} Y(s)-s y(0)-y^{\prime}(0) .
$$

Once we solve for $Y(s)=\mathcal{L}[y(x)]$, we are left with the question:
How can we recover $y(x)$?
The general problem of finding a function with a given Laplace transform is called the inversion problem.
This inversion problem and its applications to solving inital-value problems is the topic of this lecture.

The Inverse Laplace Transform

When f is continuous on $[0, \infty)$ and the Laplace transform $\mathcal{L}[f(x)]=F(s)$ exists for $s>\lambda$, then the function F is uniquely determined by f.

The Inverse Laplace Transform

When f is continuous on $[0, \infty)$ and the Laplace transform $\mathcal{L}[f(x)]=F(s)$ exists for $s>\lambda$, then the function F is uniquely determined by f.

Theorem 1

Let f and g be continuous functions on $[0, \infty)$. Then $\mathcal{L}[f(x)]=\mathcal{L}[g(x)]$ if and only if $f(x)=g(x)$ for all $x \in[0, \infty)$.

The Inverse Laplace Transform

When f is continuous on $[0, \infty)$ and the Laplace transform $\mathcal{L}[f(x)]=F(s)$ exists for $s>\lambda$, then the function F is uniquely determined by f.

Theorem 1

Let f and g be continuous functions on $[0, \infty)$. Then $\mathcal{L}[f(x)]=\mathcal{L}[g(x)]$ if and only if $f(x)=g(x)$ for all $x \in[0, \infty)$.

Definition

If $F(s)$ is a given transform and if the function f, continuous on $[0, \infty)$, has the property that $\mathcal{L}[f(x)]=F(s)$, then f is called the inverse transform of F, and is denoted by

$$
f(x)=\mathcal{L}^{-1}[F(s)] .
$$

The operator \mathcal{L}^{-1} is called the inverse operator of \mathcal{L}.

The Inverse Laplace Transform

The Inverse Laplace Transform

Theorem 2

The operator \mathcal{L}^{-1} is linear:

$$
\begin{gathered}
\mathcal{L}^{-1}[F(s)+G(s)]=\mathcal{L}^{-1}[F(s)]+\mathcal{L}^{-1}[G(s)], \text { and } \\
\mathcal{L}^{-1}[c F(s)]=c \mathcal{L}^{-1}[F(s)], c \text { any constant }
\end{gathered}
$$

The Inverse Laplace Transform

Table of Laplace Transforms

$f(x)$	$F(s)=\mathcal{L}[f(x)]$
k (constant)	$\frac{k}{s}, \quad s>0$
$e^{\alpha x}$	$\frac{1}{s-\alpha}, \quad s>\alpha$
$\cos \beta x$	$\frac{s}{s^{2}+\beta^{2}}, \quad s>0$
$\sin \beta x$	$\frac{\beta}{s^{2}+\beta^{2}}, \quad s>0$
$e^{\alpha x} \cos \beta x$	$\frac{s-\alpha}{(s-\alpha)^{2}+\beta^{2}}$,
$e^{\alpha x} \sin \beta x$	$\frac{\beta}{(s-\alpha)^{2}+\beta^{2}}$,
$x^{n}, \quad n=1,2, \ldots$	$\frac{n!}{s^{n+1}}, \quad s>0$
$x^{n} e^{r x}, \quad n=1,2, \ldots$	$\frac{n!}{(s-r)^{n+1}}$,
$x \cos \beta x$	$\frac{s^{2}-\beta^{2}}{\left(s^{2}+\beta^{2}\right)^{2}}, \quad s>r$
$x \sin \beta x$	$\frac{2 \beta s}{\left(s^{2}+\beta^{2}\right)^{2}}$,

The Inverse Laplace Transform

Examples:

1. Find $\mathcal{L}^{-1}[F(s)]$ if $F(s)=\frac{4}{s-2}+\frac{3 s+2}{s^{2}+9}$.

The Inverse Laplace Transform

Examples:

$$
\begin{aligned}
& \text { 1. Find } \mathcal{L}^{-1}[F(s)] \text { if } F(s)=\frac{4}{s-2}+\frac{3 s+2}{s^{2}+9} \\
& \begin{aligned}
\mathcal{L}^{-1}\left[\frac{4}{s-2}+\frac{3 s+2}{s^{2}+9}\right] & =4 \mathcal{L}^{-1}\left[\frac{1}{s-2}\right]+3 \mathcal{L}^{-1}\left[\frac{s}{s^{2}+9}\right]+\frac{2}{3} \mathcal{L}^{-1}\left[\frac{3}{s^{2}+9}\right] \\
& =4 e^{2 x}+3 \cos (3 x)+\frac{2}{3} \sin (3 x)
\end{aligned}
\end{aligned}
$$

The Inverse Laplace Transform

2. Find $\mathcal{L}^{-1}[F(s)]$ if $F(s)=\frac{4}{(s-1)^{3}}+\frac{s}{s^{2}+2 s+10}$.

The Inverse Laplace Transform

2. Find $\mathcal{L}^{-1}[F(s)]$ if $F(s)=\frac{4}{(s-1)^{3}}+\frac{s}{s^{2}+2 s+10}$.

Observe that

$$
\frac{s}{s^{2}+2 s+10}=\frac{s}{(s+1)^{2}+9}=\frac{s+1}{(s+1)^{2}+9}-\frac{1}{(s+1)^{2}+9}
$$

Hence

$$
\begin{aligned}
\mathcal{L}^{-1}[F(s)] & =\mathcal{L}^{-1}\left[\frac{4}{(s-1)^{3}}\right]+\mathcal{L}^{-1}\left[\frac{s+1}{(s+1)^{2}+9}\right]-\mathcal{L}^{-1}\left[\frac{1}{(s+1)^{2}+9}\right] \\
& =2 \mathcal{L}^{-1}\left[\frac{2}{(s-1)^{3}}\right]+\mathcal{L}^{-1}\left[\frac{s+1}{(s+1)^{2}+9}\right]-\frac{1}{3} \mathcal{L}^{-1}\left[\frac{3}{(s+1)^{2}+9}\right] \\
& =2 x^{2} e^{x}+e^{-x} \cos (3 x)-\frac{1}{3} e^{-x} \sin (3 x)
\end{aligned}
$$

The Inverse Laplace Transform

3. Find $\mathcal{L}^{-1}[F(s)]$ if $F(s)=\frac{s^{2}-7 s+9}{(s-1)^{2}(s+2)}$.

The Inverse Laplace Transform

3. Find $\mathcal{L}^{-1}[F(s)]$ if $F(s)=\frac{s^{2}-7 s+9}{(s-1)^{2}(s+2)}$.

Observe that

$$
\begin{aligned}
\frac{s^{2}-7 s+9}{(s-1)^{2}(s+2)} & =\frac{A}{s-1}+\frac{B}{(s-1)^{2}}+\frac{C}{s+2} \\
& =\frac{(A+C) s^{2}+(A+B-2 C) s-2 A+2 B+C}{(s-1)^{2}(s+2)}
\end{aligned}
$$

To find the coefficients of the partial fractions, we need to solve the system

$$
\left\{\begin{array}{l}
A+C=1 \\
A+B-2 C=-7 \\
-2 A+2 B+C=9
\end{array}\right.
$$

whose solution is $A=-2, B=1, C=3$.

The Inverse Laplace Transform

Hence we can write

$$
F(s)=\frac{-2}{s-1}+\frac{1}{(s-1)^{2}}+\frac{3}{s+2}
$$

It follows that

$$
\begin{aligned}
\mathcal{L}^{-1}[F(s)] & =-2 \mathcal{L}^{-1}\left[\frac{1}{s-1}\right]+\mathcal{L}^{-1}\left[\frac{1}{(s-1)^{2}}\right]+3 \mathcal{L}^{-1}\left[\frac{1}{s+2}\right] \\
& =-2 e^{x}+x e^{x}+3 e^{-2 x}
\end{aligned}
$$

The Inverse Laplace Transform

4. Find $\mathcal{L}^{-1}[F(s)]$ if $F(s)=\frac{2}{(s+1)\left(s^{2}+1\right)}$.

The Inverse Laplace Transform

4. Find $\mathcal{L}^{-1}[F(s)]$ if $F(s)=\frac{2}{(s+1)\left(s^{2}+1\right)}$.

Observe that

$$
\begin{aligned}
\frac{2}{(s+1)\left(s^{2}+1\right)} & =\frac{A}{s+1}+\frac{B s+C}{s^{2}+1} \\
& =\frac{(A+B) s^{2}+(B+C) s+A+C}{(s+1)\left(s^{2}+1\right)}
\end{aligned}
$$

To find the coefficients of the partial fractions, we need to solve the system

$$
\left\{\begin{array}{l}
A+B=0 \\
B+C=0 \\
A+C=2
\end{array}\right.
$$

whose solution is $A=1, B=-1, C=1$.

The Inverse Laplace Transform

Hence we can write

$$
F(s)=\frac{1}{s+1}+\frac{1-s}{s^{2}+1}
$$

It follows that

$$
\begin{aligned}
\mathcal{L}^{-1}[F(s)] & =\mathcal{L}^{-1}\left[\frac{1}{s+1}\right]+\mathcal{L}^{-1}\left[\frac{1-s}{s^{2}+1}\right] \\
& =\mathcal{L}^{-1}\left[\frac{1}{s+1}\right]+\mathcal{L}^{-1}\left[\frac{1}{s^{2}+1}\right]-\mathcal{L}^{-1}\left[\frac{s}{s^{2}+1}\right] \\
& =e^{-x}+\sin (x)-\cos (x)
\end{aligned}
$$

Solving Initial-Value Problems

Examples:

1. Find the solution to the IVP:

$$
y^{\prime}-3 y=4 \cos (2 x) ; y(0)=4
$$

Solving Initial-Value Problems

Examples:

1. Find the solution to the IVP:

$$
y^{\prime}-3 y=4 \cos (2 x) ; y(0)=4
$$

We apply the Laplace transform

$$
\begin{aligned}
\mathcal{L}\left[y^{\prime}-3 y\right] & =\mathcal{L}[4 \cos (2 x)] \\
\mathcal{L}\left[y^{\prime}\right]-3 \mathcal{L}[y] & =4 \mathcal{L}[\cos (2 x)] \\
s \mathcal{L}[y]-y(0)-3 \mathcal{L}[y] & =4 \frac{s}{s^{2}+4} \\
(s-3) \mathcal{L}[y] & =4 \frac{s}{s^{2}+4}+4
\end{aligned}
$$

Solving Initial-Value Problems

Examples:

1. Find the solution to the IVP:

$$
y^{\prime}-3 y=4 \cos (2 x) ; y(0)=4
$$

We apply the Laplace transform

$$
\begin{aligned}
\mathcal{L}\left[y^{\prime}-3 y\right] & =\mathcal{L}[4 \cos (2 x)] \\
\mathcal{L}\left[y^{\prime}\right]-3 \mathcal{L}[y] & =4 \mathcal{L}[\cos (2 x)] \\
s \mathcal{L}[y]-y(0)-3 \mathcal{L}[y] & =4 \frac{s}{s^{2}+4} \\
(s-3) \mathcal{L}[y] & =4 \frac{s}{s^{2}+4}+4
\end{aligned}
$$

Hence

$$
\mathcal{L}[y]=Y(s)=\frac{4 s}{\left(s^{2}+4\right)(s-3)}+\frac{4}{s-3}=\frac{4 s^{2}+4 s+16}{\left(s^{2}+4\right)(s-3)}
$$

Solving Initial-Value Problems

By partial fraction decomposition,

$$
\begin{aligned}
Y(s)=\frac{4 s^{2}+4 s+16}{\left(s^{2}+4\right)(s-3)} & =\frac{A}{s-3}+\frac{B s+C}{s^{2}+4} \\
& =\frac{64 / 13}{s-3}+\frac{-12 / 13 s+16 / 13}{s^{2}+4}
\end{aligned}
$$

Hence, we have

$$
y(x)=\frac{64}{13} \mathcal{L}^{-1}\left[\frac{1}{s-3}\right]+\frac{8}{13} \mathcal{L}^{-1}\left[\frac{2}{s^{2}+4}\right]-\frac{12}{13} \mathcal{L}^{-1}\left[\frac{s}{s^{2}+4}\right]
$$

Computing the inverse Laplace transform we obtain

$$
y(x)=\frac{64}{13} e^{3 x}+\frac{8}{13} \sin (2 x)-\frac{12}{13} \cos (2 x)
$$

Solving Initial-Value Problems

2. Find the solution to the IVP

$$
y^{\prime \prime}-y=4 e^{x} ; y(0)=2, y^{\prime}(0)=0 .
$$

Solving Initial-Value Problems

2. Find the solution to the IVP

$$
y^{\prime \prime}-y=4 e^{x} ; y(0)=2, y^{\prime}(0)=0 .
$$

We apply the Laplace transform

$$
\begin{aligned}
\mathcal{L}\left[y^{\prime \prime}-y\right] & =\mathcal{L}\left[4 e^{x}\right] \\
\mathcal{L}\left[y^{\prime \prime}\right]-\mathcal{L}[y] & =4 \mathcal{L}\left[e^{x}\right] \\
s^{2} \mathcal{L}[y]-s y(0)-y^{\prime}(0)-\mathcal{L}[y] & =4 \frac{1}{s-1} \\
\left(s^{2}-1\right) \mathcal{L}[y] & =4 \frac{1}{s-1}+2 s
\end{aligned}
$$

Solving Initial-Value Problems

2. Find the solution to the IVP

$$
y^{\prime \prime}-y=4 e^{x} ; y(0)=2, y^{\prime}(0)=0
$$

We apply the Laplace transform

$$
\begin{aligned}
\mathcal{L}\left[y^{\prime \prime}-y\right] & =\mathcal{L}\left[4 e^{x}\right] \\
\mathcal{L}\left[y^{\prime \prime}\right]-\mathcal{L}[y] & =4 \mathcal{L}\left[e^{x}\right] \\
s^{2} \mathcal{L}[y]-s y(0)-y^{\prime}(0)-\mathcal{L}[y] & =4 \frac{1}{s-1} \\
\left(s^{2}-1\right) \mathcal{L}[y] & =4 \frac{1}{s-1}+2 s
\end{aligned}
$$

Hence

$$
\begin{aligned}
\mathcal{L}[y]=Y(s) & =\frac{4}{\left(s^{2}-1\right)(s-1)}+\frac{2 s}{s^{2}-1} \\
& =\frac{4}{(s+1)(s-1)^{2}}+\frac{2 s}{(s-1)(s+1)} \\
& =\frac{2 s^{2}+2 s+4}{(s+1)(s-1)^{2}}
\end{aligned}
$$

Solving Initial-Value Problems

By partial fraction decomposition,

$$
\begin{aligned}
\frac{2 s^{2}+2 s+4}{(s+1)(s-1)^{2}} & =\frac{A}{s-1}+\frac{B}{(s-1)^{2}}+\frac{C}{s+1} \\
& =\frac{1}{s-1}+\frac{4}{(s-1)^{2}}+\frac{1}{s+1}
\end{aligned}
$$

Solving Initial-Value Problems

By partial fraction decomposition,

$$
\begin{aligned}
\frac{2 s^{2}+2 s+4}{(s+1)(s-1)^{2}} & =\frac{A}{s-1}+\frac{B}{(s-1)^{2}}+\frac{C}{s+1} \\
& =\frac{1}{s-1}+\frac{4}{(s-1)^{2}}+\frac{1}{s+1}
\end{aligned}
$$

Hence, we can write

$$
Y(s)=\frac{1}{s-1}+4 \frac{1}{(s-1)^{2}}+\frac{1}{s+1}
$$

Solving Initial-Value Problems

By partial fraction decomposition,

$$
\begin{aligned}
\frac{2 s^{2}+2 s+4}{(s+1)(s-1)^{2}} & =\frac{A}{s-1}+\frac{B}{(s-1)^{2}}+\frac{C}{s+1} \\
& =\frac{1}{s-1}+\frac{4}{(s-1)^{2}}+\frac{1}{s+1}
\end{aligned}
$$

Hence, we can write

$$
Y(s)=\frac{1}{s-1}+4 \frac{1}{(s-1)^{2}}+\frac{1}{s+1}
$$

Computing the inverse Laplace transform we get

$$
y(x)=e^{x}+4 x e^{x}+e^{-x}
$$

