Math 3321

Initial-Value Problems with Piecewise Continuous Nonhomogeneous Terms

University of Houston

Lecture 16

Outline

(1) Introduction

(2) Examples

Introduction

In this lecture, we will solve initial-value problems where the nonhomogeneous terms are piecewise continuous functions.

Introduction

In this lecture, we will solve initial-value problems where the nonhomogeneous terms are piecewise continuous functions.

Recall the following:

$$
\mathcal{L}\left[y^{\prime}\right]=s Y(s)-y(0)
$$

and

$$
\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} Y(s)-s y(0)-y^{\prime}(0)
$$

where $\mathcal{L}[y(x)]=Y(s)$.

Introduction

In this lecture, we will solve initial-value problems where the nonhomogeneous terms are piecewise continuous functions.

Recall the following:

$$
\mathcal{L}\left[y^{\prime}\right]=s Y(s)-y(0)
$$

and

$$
\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} Y(s)-s y(0)-y^{\prime}(0)
$$

where $\mathcal{L}[y(x)]=Y(s)$.
We will also need

$$
\mathcal{L}[f(x-c) u(x-c)]=e^{-c s} F(s)
$$

and

$$
\mathcal{L}^{-1}\left[e^{-c s} F(s)\right]=f(x-c) u(x-c)
$$

Table of Laplace Transforms

$f(x)$	$F(s)=\mathcal{L}[f(x)]$
k (constant)	$\frac{k}{s}, \quad s>0$
$e^{\alpha x}$	$\frac{1}{s-\alpha}, \quad s>\alpha$
$\cos \beta x$	$\frac{s}{s^{2}+\beta^{2}}, \quad s>0$
$\sin \beta x$	$\frac{\beta}{s^{2}+\beta^{2}}, \quad s>0$
$e^{\alpha x} \cos \beta x$	$\frac{s-\alpha}{(s-\alpha)^{2}+\beta^{2}}, \quad s>\alpha$
$e^{\alpha x} \sin \beta x$	$\frac{\beta}{(s-\alpha)^{2}+\beta^{2}}, \quad s>\alpha$
$x^{n}, \quad n=1,2, \ldots$	$\frac{n!}{s^{n+1},} s>0$
$x^{n} e^{r x}, \quad n=1,2, \ldots$	$\frac{n!}{(s-r)^{n+1}}, \quad s>r$
$x \cos \beta x$	$\frac{s^{2}-\beta^{2}}{\left(s^{2}+\beta^{2}\right)^{2}}, \quad s>0$
$x \sin \beta x$	$\frac{2 \beta s}{\left(s^{2}+\beta^{2}\right)^{2}}$,

Examples

1. Solve $y^{\prime \prime}+2 y^{\prime}+y=f(x) ; y(0)=y^{\prime}(0)=0$, where

$$
f(x)= \begin{cases}1, & 0 \leq x<2 \\ x-1, & 2 \leq x\end{cases}
$$

Examples

1. Solve $y^{\prime \prime}+2 y^{\prime}+y=f(x) ; y(0)=y^{\prime}(0)=0$, where

$$
f(x)= \begin{cases}1, & 0 \leq x<2 \\ x-1, & 2 \leq x\end{cases}
$$

Using the idea presented in Lecture 15, we can write f as follows

$$
f(x)=f_{1}(x)+f_{2}(x), \quad x \geq 0
$$

where each term is a continuous function on an interval, namely

$$
\begin{aligned}
& f_{1}(x)=1-1 u(x-2) \\
& f_{2}(x)=(x-1) u(x-2)
\end{aligned}
$$

Hence

$$
f(x)=1+(x-2) u(x-2) \quad x \geq 0
$$

Examples

Taking the Laplace transform of the LHS of the equation, we get

$$
\begin{aligned}
\mathcal{L}\left[y^{\prime \prime}+2 y^{\prime}+y\right] & =\mathcal{L}\left[y^{\prime \prime}\right]+2 \mathcal{L}\left[y^{\prime}\right]+\mathcal{L}[y] \\
& =s^{2} \mathcal{L}[y]-s y(0)-y^{\prime}(0)+2 s \mathcal{L}[y]-2 y(0)+\mathcal{L}[y] \\
& =s^{2} \mathcal{L}[y]+2 s \mathcal{L}[y]+\mathcal{L}[y] \\
& =(s+1)^{2} \mathcal{L}[y]
\end{aligned}
$$

Examples

Taking the Laplace transform of the LHS of the equation, we get

$$
\begin{aligned}
\mathcal{L}\left[y^{\prime \prime}+2 y^{\prime}+y\right] & =\mathcal{L}\left[y^{\prime \prime}\right]+2 \mathcal{L}\left[y^{\prime}\right]+\mathcal{L}[y] \\
& =s^{2} \mathcal{L}[y]-s y(0)-y^{\prime}(0)+2 s \mathcal{L}[y]-2 y(0)+\mathcal{L}[y] \\
& =s^{2} \mathcal{L}[y]+2 s \mathcal{L}[y]+\mathcal{L}[y] \\
& =(s+1)^{2} \mathcal{L}[y]
\end{aligned}
$$

We also have that

$$
\mathcal{L}[f(x)]=\mathcal{L}[1]+\mathcal{L}[(x-2) u(x-2)]=\frac{1}{s}+e^{-2 s} \frac{1}{s^{2}}
$$

Examples

Taking the Laplace transform of the LHS of the equation, we get

$$
\begin{aligned}
\mathcal{L}\left[y^{\prime \prime}+2 y^{\prime}+y\right] & =\mathcal{L}\left[y^{\prime \prime}\right]+2 \mathcal{L}\left[y^{\prime}\right]+\mathcal{L}[y] \\
& =s^{2} \mathcal{L}[y]-s y(0)-y^{\prime}(0)+2 s \mathcal{L}[y]-2 y(0)+\mathcal{L}[y] \\
& =s^{2} \mathcal{L}[y]+2 s \mathcal{L}[y]+\mathcal{L}[y] \\
& =(s+1)^{2} \mathcal{L}[y]
\end{aligned}
$$

We also have that

$$
\mathcal{L}[f(x)]=\mathcal{L}[1]+\mathcal{L}[(x-2) u(x-2)]=\frac{1}{s}+e^{-2 s} \frac{1}{s^{2}}
$$

Hence the Laplace transform of the differential equation gives

$$
(s+1)^{2} \mathcal{L}[y]=\frac{1}{s}+e^{-2 s} \frac{1}{s^{2}}
$$

so that

$$
Y(s)=\mathcal{L}[y]=\frac{1}{s(s+1)^{2}}+e^{-2 s} \frac{1}{s^{2}(s+1)^{2}}
$$

Examples

We can write

$$
Y(s)=\frac{1}{s(s+1)^{2}}+e^{-2 s} \frac{1}{s^{2}(s+1)^{2}}=Y_{1}(s)+e^{-2 s} Y_{2}(s)
$$

where

$$
Y_{1}(s)=\frac{1}{s(s+1)^{2}}, \quad Y_{2}(s)=\frac{1}{s^{2}(s+1)^{2}}
$$

Examples

We can write

$$
Y(s)=\frac{1}{s(s+1)^{2}}+e^{-2 s} \frac{1}{s^{2}(s+1)^{2}}=Y_{1}(s)+e^{-2 s} Y_{2}(s)
$$

where

$$
Y_{1}(s)=\frac{1}{s(s+1)^{2}}, \quad Y_{2}(s)=\frac{1}{s^{2}(s+1)^{2}}
$$

so that the solution will be of the form

$$
y(x)=y_{1}(x)+y_{2}(x-2) u(x-2)
$$

where

$$
y_{1}(x)=\mathcal{L}^{-1}\left[Y_{1}(s)\right], \quad y_{2}(x)=\mathcal{L}^{-1}\left[Y_{2}(s)\right] .
$$

Examples

We can write

$$
Y(s)=\frac{1}{s(s+1)^{2}}+e^{-2 s} \frac{1}{s^{2}(s+1)^{2}}=Y_{1}(s)+e^{-2 s} Y_{2}(s)
$$

where

$$
Y_{1}(s)=\frac{1}{s(s+1)^{2}}, \quad Y_{2}(s)=\frac{1}{s^{2}(s+1)^{2}}
$$

so that the solution will be of the form

$$
y(x)=y_{1}(x)+y_{2}(x-2) u(x-2)
$$

where

$$
y_{1}(x)=\mathcal{L}^{-1}\left[Y_{1}(s)\right], \quad y_{2}(x)=\mathcal{L}^{-1}\left[Y_{2}(s)\right] .
$$

To find the inverse Laplace transform of Y_{1} and Y_{2}, we will apply partial fractions.

Examples

Using partial fractions

$$
Y_{1}(s)=\frac{1}{s(s+1)^{2}}=\frac{1}{s}-\frac{1}{s+1}-\frac{1}{(s+1)^{2}}
$$

Hence

$$
y_{1}(x)=\mathcal{L}^{-1}\left[\frac{1}{s}\right]-\mathcal{L}^{-1}\left[\frac{1}{s+1}\right]-\mathcal{L}^{-1}\left[\frac{1}{(s+1)^{2}}\right]=1-e^{-s}-x e^{-s}
$$

Examples

Using partial fractions

$$
Y_{1}(s)=\frac{1}{s(s+1)^{2}}=\frac{1}{s}-\frac{1}{s+1}-\frac{1}{(s+1)^{2}}
$$

Hence

$$
y_{1}(x)=\mathcal{L}^{-1}\left[\frac{1}{s}\right]-\mathcal{L}^{-1}\left[\frac{1}{s+1}\right]-\mathcal{L}^{-1}\left[\frac{1}{(s+1)^{2}}\right]=1-e^{-s}-x e^{-s}
$$

Similarly, using partial fractions, we get

$$
Y_{2}(s)=\frac{1}{s^{2}(s+1)^{2}}=-\frac{2}{s}+\frac{1}{s^{2}}+\frac{2}{s+1}+\frac{1}{(s+1)^{2}}
$$

Examples

Using partial fractions

$$
Y_{1}(s)=\frac{1}{s(s+1)^{2}}=\frac{1}{s}-\frac{1}{s+1}-\frac{1}{(s+1)^{2}}
$$

Hence

$$
y_{1}(x)=\mathcal{L}^{-1}\left[\frac{1}{s}\right]-\mathcal{L}^{-1}\left[\frac{1}{s+1}\right]-\mathcal{L}^{-1}\left[\frac{1}{(s+1)^{2}}\right]=1-e^{-s}-x e^{-s}
$$

Similarly, using partial fractions, we get

$$
Y_{2}(s)=\frac{1}{s^{2}(s+1)^{2}}=-\frac{2}{s}+\frac{1}{s^{2}}+\frac{2}{s+1}+\frac{1}{(s+1)^{2}}
$$

Hence

$$
\begin{aligned}
y_{2}(x) & =-2 \mathcal{L}^{-1}\left[\frac{1}{s}\right]+\mathcal{L}^{-1}\left[\frac{1}{s^{2}}\right]+2 \mathcal{L}^{-1}\left[\frac{1}{s+1}\right]+\mathcal{L}^{-1}\left[\frac{1}{(s+1)^{2}}\right] \\
& =-2+x+2 e^{-x}+x e^{-x}
\end{aligned}
$$

Examples

Using partial fractions

$$
Y_{1}(s)=\frac{1}{s(s+1)^{2}}=\frac{1}{s}-\frac{1}{s+1}-\frac{1}{(s+1)^{2}}
$$

Hence

$$
y_{1}(x)=\mathcal{L}^{-1}\left[\frac{1}{s}\right]-\mathcal{L}^{-1}\left[\frac{1}{s+1}\right]-\mathcal{L}^{-1}\left[\frac{1}{(s+1)^{2}}\right]=1-e^{-s}-x e^{-s}
$$

Similarly, using partial fractions, we get

$$
Y_{2}(s)=\frac{1}{s^{2}(s+1)^{2}}=-\frac{2}{s}+\frac{1}{s^{2}}+\frac{2}{s+1}+\frac{1}{(s+1)^{2}}
$$

Hence

$$
\begin{aligned}
y_{2}(x) & =-2 \mathcal{L}^{-1}\left[\frac{1}{s}\right]+\mathcal{L}^{-1}\left[\frac{1}{s^{2}}\right]+2 \mathcal{L}^{-1}\left[\frac{1}{s+1}\right]+\mathcal{L}^{-1}\left[\frac{1}{(s+1)^{2}}\right] \\
& =-2+x+2 e^{-x}+x e^{-x}
\end{aligned}
$$

Finally

$$
\begin{aligned}
y & =1-e^{-x}-x e^{-x}+\left(-2+(x-2)+2 e^{-(x-2)}+(x-2) e^{-(x-2)}\right) u(x-2) \\
& =1-(x+1) e^{-x}+\left((x-4)+x e^{-(x-2)}\right) u(x-2)
\end{aligned}
$$

Examples

2. Solve $y^{\prime \prime}+2 y^{\prime}+y=f(x) ; y(0)=3, y^{\prime}(0)=-1$, where

$$
f(x)= \begin{cases}e^{x}, & 0 \leq x<1 \\ e^{x}-1, & 1 \leq x\end{cases}
$$

Examples

2. Solve $y^{\prime \prime}+2 y^{\prime}+y=f(x) ; y(0)=3, y^{\prime}(0)=-1$, where

$$
f(x)= \begin{cases}e^{x}, & 0 \leq x<1 \\ e^{x}-1, & 1 \leq x\end{cases}
$$

Using the same idea as above, we can write f as

$$
f(x)=f_{1}(x)+f_{2}(x) \quad x \geq 0
$$

where

$$
\begin{aligned}
f_{1}(x) & =e^{x}-e^{x} u(x-1) \\
f_{2}(x) & =\left(e^{x}-1\right) u(x-1)
\end{aligned}
$$

Hence

$$
f(x)=e^{x}-u(x-1) \quad x \geq 0
$$

We have

$$
\mathcal{L}[f(x)]=\frac{1}{s-1}-e^{-s} \frac{1}{s}
$$

Examples

Taking the Laplace transform of the LHS of the equation, we get

$$
\begin{aligned}
\mathcal{L}\left[y^{\prime \prime}+2 y^{\prime}+y\right] & =s^{2} \mathcal{L}[y]-s y(0)-y^{\prime}(0)+2 s \mathcal{L}[y]-2 y(0)+\mathcal{L}[y] \\
& =s^{2} \mathcal{L}[y]+2 s \mathcal{L}[y]+\mathcal{L}[y]-3(s+2)+1 \\
& =(s+1)^{2} \mathcal{L}[y]-3 s-5
\end{aligned}
$$

Examples

Taking the Laplace transform of the LHS of the equation, we get

$$
\begin{aligned}
\mathcal{L}\left[y^{\prime \prime}+2 y^{\prime}+y\right] & =s^{2} \mathcal{L}[y]-s y(0)-y^{\prime}(0)+2 s \mathcal{L}[y]-2 y(0)+\mathcal{L}[y] \\
& =s^{2} \mathcal{L}[y]+2 s \mathcal{L}[y]+\mathcal{L}[y]-3(s+2)+1 \\
& =(s+1)^{2} \mathcal{L}[y]-3 s-5
\end{aligned}
$$

Hence the Laplace transform of the differential equation gives

$$
(s+1)^{2} \mathcal{L}[y]-3 s-5=\frac{1}{s-1}-e^{-s} \frac{1}{s}
$$

so that

$$
\begin{aligned}
Y(s) & =\mathcal{L}[y]=\frac{1}{(s-1)(s+1)^{2}}+\frac{3 s+5}{(s+1)^{2}}-e^{-s} \frac{1}{s(s+1)^{2}} \\
& =\frac{3 s^{2}+4 s-4}{(s-1)(s+1)^{2}}-e^{-s} \frac{1}{s(s+1)^{2}} \\
& =\frac{9}{4} \frac{1}{s+1}+\frac{5}{2} \frac{1}{(s+1)^{2}}+\frac{3}{4} \frac{1}{s-1}-e^{-s}\left(\frac{1}{s}-\frac{1}{s+1}-\frac{1}{(s+1)^{2}}\right)
\end{aligned}
$$

Examples

To find the solution of the IVP we need to compute

$$
y(x)=\mathcal{L}^{-1}\left[\frac{9}{4} \frac{1}{s+1}+\frac{5}{2} \frac{1}{(s+1)^{2}}+\frac{3}{4} \frac{1}{s-1}-e^{-s}\left(\frac{1}{s}-\frac{1}{s+1}-\frac{1}{(s+1)^{2}}\right)\right]
$$

Examples

To find the solution of the IVP we need to compute

$$
y(x)=\mathcal{L}^{-1}\left[\frac{9}{4} \frac{1}{s+1}+\frac{5}{2} \frac{1}{(s+1)^{2}}+\frac{3}{4} \frac{1}{s-1}-e^{-s}\left(\frac{1}{s}-\frac{1}{s+1}-\frac{1}{(s+1)^{2}}\right)\right]
$$

Hence

$$
y(x)=\frac{9}{4} e^{-x}+\frac{5}{2} x e^{-x}+\frac{3}{4} e^{x}-\left(1-e^{-(x-1)}-(x-1) e^{-(x-1)}\right) u(x-1)
$$

Examples

To find the solution of the IVP we need to compute

$$
y(x)=\mathcal{L}^{-1}\left[\frac{9}{4} \frac{1}{s+1}+\frac{5}{2} \frac{1}{(s+1)^{2}}+\frac{3}{4} \frac{1}{s-1}-e^{-s}\left(\frac{1}{s}-\frac{1}{s+1}-\frac{1}{(s+1)^{2}}\right)\right]
$$

Hence

$$
y(x)=\frac{9}{4} e^{-x}+\frac{5}{2} x e^{-x}+\frac{3}{4} e^{x}-\left(1-e^{-(x-1)}-(x-1) e^{-(x-1)}\right) u(x-1)
$$

which simplifies to

$$
y(x)=\left(\frac{9}{4}+\frac{5}{2} x\right) e^{-x}+\frac{3}{4} e^{x}-\left(1-x e^{-(x-1)}\right) u(x-1)
$$

