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Abstract

Efficient representations of multivariate functions are critical for the design of
state-of-the-art methods of data restoration and image reconstruction. In this
work, we consider the representation of spatio-temporal data such as temporal
sequences (videos) of 2- and 3-dimensional images, where conventional separable
representations are usually very inefficient, due to their limitations in handling
the geometry of the data. To address this challenge, we define a class EpAq Ă
L2pR4q of functions of 4 variables dominated by hypersurface singularities in the
first three coordinates that we apply to model 4-dimensional data corresponding
to temporal sequences (videos) of 3-dimensional objects.

To provide an efficient representation for this type of data, we introduce
a new multiscale directional system of functions based on cylindrical shearlets
and prove that this new approach achieves superior approximation properties
with respect to conventional multiscale representations. We illustrate the ad-
vantages of our approach by applying a discrete implementation of the new
representation to a challenging problem from dynamic tomography. Numerical
results confirm the potential of our novel approach with respect to conventional
multiscale methods.
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1. Introduction

Sparse representations of multivariate functions have been remarkably suc-
cessful in applied mathematics and signal processing, with applications ranging
from image denoising and inpainting through medical image reconstruction and
feature extraction being proposed during the last decade. A multiplicity of such5

constructions were introduced to deal with different types of multidimensional
data and signal processing tasks, including curvelets [1], shearlets [2, 3], ban-
dlets [4], scattering wavelets [5], bendlets [6], parabolic molecules [7], directional
multivariate wavelets [8] and directional framelets [9]. The key observation un-
derpinning such constructions is that representations of multivariate functions10

that capture the fundamental geometry of data result in superior approximation
properties that can be translated into improved algorithms for signal process-
ing applications. For instance, shearlets, which are defined as well-localized
anisotropic waveforms ranging over multiple scales, location and orientations in
L2pR2q, are especially designed to represent edge discontinuities. As a result,15

they provide optimally sparse approximations, in a precise sense, for cartoon-like
images - a class of piecewise smooth functions that is used to model a large class
of natural images - outperforming conventional multiscale representations. Such
approximation properties were critically exploited to develop successful numer-
ical algorithms for signal processing and medical imaging [10, 11, 12, 13, 14].20

In this paper, we introduce a new construction of cylindrical shearlets on
L2pR4q aimed at the efficient representation of spatio-temporal data, that is,
temporal sequences (or videos) of 3-dimensional objects. Our approach is es-
pecially motivated by dynamic computed tomography (CT), a medical imaging
technique whose goal is to reconstruct 3-dimensional image sequences where the25

main focus is the dynamic of the living human body [15] for applications such
as cardiac imaging or image-guided interventional medical procedures. A main
challenge in dynamic CT reconstruction is that, due to technical or physical
constraints, data are often heavily undersampled causing the inverse problem
associated with the reconstruction task to be potentially ill-posed. For instance,30

many dynamic CT scenarios involve the use of contrast tracers and full X-ray
scans are too slow to capture the movement of the tracer (e.g., iodine) in the
imaging windows. The most common remedy for reducing the duration of the
imaging as well as the radiation dose consists in lowering the number of scanning
angles leading to an undersampled reconstruction problem.35

Some of the authors of this paper have recently shown that one can suc-
cessfully address the undersampled reconstruction problem in dynamic CT by
taking advantage of appropriate sparse data representations [16]. In particu-
lar, 3-dimensional shearlets were successfully applied to develop an improved
algorithm for the reconstruction of 2-dimensional time frames in sparse dy-40

namic tomography by exploiting their superior approximation properties of 3-
dimensional data. However, their method does not apply directly to the ‘full’
dynamic CT problem of reconstructing 3-dimensional time frames, that is, 4-
dimensional data. To deal with such task, here we introduce cylindrical shear-
lets on L2pR4q as a collection of well-localized waveforms ranging over multiple45
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scales, locations and orientations on R4. To better adapt the geometry of this
representation to the characteristics of spatio-temporal data - under the simpli-
fying assumptions that such data are dominated by hyper-surface discontinuities
in the three spatial coordinates - we will assume that our representation has di-
rectional sensitivity with respect to the 3 spatial coordinates but not along the50

time coordinate.
Our main theoretical result in this paper is that this new construction pro-

vides highly sparse representations for the class of 4-dimensional cylindrical
cartoon-like functions - the simplified model we adopt for spatio-temporal data
- outperforming more conventional representations. Next, to illustrate the po-55

tential of our new construction in numerical applications, we consider a problem
of undersampled reconstruction in dynamic tomography using synthetic data.
Our numerical results show that our algorithm for dynamic CT reconstruction
based on cylindrical shearlets improves the reconstruction quality as compared
to similar methods based on conventional wavelets.60

Finally, we remark that shearlets have been already applied in (2d+1) video
applications. For instance, conventional 3d-shearlets were employed in [17] to
provide efficient video representations and, more recently, to detect relevant
space-time features of videos in [18]. However, the cylindrical shearlets we
consider in this paper are derived from a very different construction that han-65

dles spatial and temporal coordinates with different geometric sensitivities. As
already indicated by some of the authors in [19] and further argued in this
paper, this construction entails distinct mathematical properties with respect
to conventional shearlets and significant potential advantages in the context of
spatio-temporal data.70

1.1. Sparse 4-dimensional representations

To explain the significance of our new representation, we start with a heuris-
tic argument showing why cylindrical shearlets are expected to be especially
effective in representing a compactly supported piecewise regular function f of
four variables with discontinuities in the first 3 spatial coordinates. To keep this75

explanation at an intuitive level, we will postpone the precise definition of the
class EpAq of cylindrical cartoon-like functions to Sec. 3.

We start by examining the 4d wavelet expansion of f using a Parseval frame
of wavelets tϕj,kpxq “ 24jϕp22jx´ kq : j P Z, k P Z4u Ă L2pR4q where ϕ is well
localized. We choose 22j as dilation factor rather than 2j to be consistent with
the cylindrical shearlet representation. An element ϕj,k of the wavelet system at
scale of 2´2j is essentially supported on a box of size 2´2j ˆ 2´2j ˆ 2´2j ˆ 2´2j .
Since the surface of discontinuity of f has finite volume in the 4d-space, there
are approximately 26j wavelet coefficients Fj,kpfq “ xf, ϕj,ky associated with
this surface, while the remaining coefficients are negligible at fine scales. A
direct computation shows that

ż

R4

|ϕj,kpxq| dx “ 24j
ż

R4

|ϕp22jx´ kq| dx “ 2´4j

ż

R4

|ϕpyq| dy ď c 2´4j ,
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for a constant c ą 0. Hence, at scale of 2´2j , we have

|Fj,kpfq| ď ‖f‖8‖ϕj,k‖L1 ď c 2´4j .

For brevity, here and in the following we use the convention that the same letter
c or C may denote different uniform constants. Thus, letting N “ 26j , the N -th
largest wavelet coefficient of f in magnitude, denoted by |F pfq|N , is bounded

by OpN´
2
3 q. Hence, if f

pwavq
N is the approximation of f obtained by taking the

N largest coefficients (in absolute value) of its wavelet expansion, we have

‖f ´ f pwavqN ‖2L2 ď
ÿ

µąN

|F pfq|2µ ď cN´
1
3 .

Next, we examine the 4d cylindrical shearlet expansion of f . The elements of
the cylindrical shearlet system ψj,`,k are essentially of the form 23jψpAjB`x´kq,
where ψ is a bounded well-localized function, A is a diagonal matrix with factors
p22j , 2j , 2j , 22jq and B` is an appropriate shear matrix. As a result, a direct
estimate shows that there is a constant c ą 0 such that

ż

R4

|ψj,k,`pxq| dx “ 2´3j

ż

R4

|ψpyq| dy ď c 2´3j .

Hence, at scale 2´2j , the cylindrical shearlet coefficients sj,k,` “ xf, ψj,`,ky are
bounded by

|sj,k,`pfq| ď ‖f‖8‖ψj,k,`‖L1 ď c 2´3j .

Each element ψj,`,k is essentially supported on a parallelepiped of size 2´2j ˆ

2´jˆ2´jˆ2´2j with various orientations controlled by ` and, due to directional
sensitivity and elongated support, the only significant cylindrical shearlet coef-
ficients occur when an element ψj,`,k is tangent to the surface of discontinuity
of f . Only about 23j cylindrical shearlet coefficients are significant. Thus, let-
ting N “ 23j , the N-th largest cylindrical shearlet coefficient in absolute value,

denoted as |spfq|N , is bounded by OpN´1q. If we denote as f
pcshq
N the approxi-

mation of f obtained by taking the N largest coefficients (in absolute value) of
its shearlet expansion, we have

‖f ´ f pcshqN ‖2L2 ď
ÿ

µąN

|spfq|2µ ď cN´1.

We will show below using a rigorous argument that the estimate above is essen-
tially correct.

1.2. Outline80

The rest of the paper is organized as follows. In Sec. 2, we introduce a
new construction of 4-dimensional cylindrical shearlets by generalizing the 3-
dimensional construction in [19]. In Sec. 3, we present our sparse approximation
results using 4-dimensional cylindrical shearlets, whose proofs are postponed to
Appendix B. We present a numerical implementation of 4-dimensional cylindri-85

cal shearlets in Sec. 4 and apply this representation to a problem from dynamic
tomography in Sec. 5. We finally provide concluding remarks in Sec. 6.
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2. Cylindrical shearlets

Cylindrical shearlets were recently introduced by some of the authors [19] as
a variant of the shearlet construction in the 3-dimensional setting. As remarked90

above, this construction is motivated by applications where data are dominated
by discontinuities that occur perpendicularly to one of the coordinate axes so
that it is useful to employ representations that are direction-sensitive with re-
spect to one hyperspace.

In the 4-dimensional setting, we associate cylindrical shearlets to three cylin-95

drical hyper-pyramids defined as:

P1 “ tpξ1, ξ2, ξ3, ξ4q P R4 : | ξ2ξ1 | ď 1, | ξ3ξ1 | ď 1u,

P2 “ tpξ1, ξ2, ξ3, ξ4q P R4 : | ξ1ξ2 | ď 1, | ξ3ξ2 | ď 1u,

P3 “ tpξ1, ξ2, ξ3, ξ4q P R4 : | ξ1ξ3 | ď 1, | ξ2ξ3 | ď 1u.

Definition 2.1. For d “ 1, 2, 3, a pyramid-based cylindrical shearlet system
associated with the pyramid Pd is a collection of functions

tψ
pdq
j,`,k : j ě 0, ` “ p`1, `2q P Z2, |`1|, |`2| ď 2j , k P Z4u, (1)

where the elements of the system (1) are given in the Fourier domain as

ψ̂
pdq
j,`,kpξq “ |detApdq|

´
j
2W p2´2jξqVpdqpξA

´j
pdqB

r´`s
pdq q e

2πiξA´j
pdq
B
r´`s

pdq
k (2)

with functions W,Vpdq : R4 Ñ C to be defined below and the matrices Apdq and

B
r`s
pdq given by

Ap1q “

¨
˚̊
˝

4 0 0 0
0 2 0 0
0 0 2 0
0 0 0 4

˛
‹‹‚, Ap2q “

¨
˚̊
˝

2 0 0 0
0 4 0 0
0 0 2 0
0 0 0 4

˛
‹‹‚, Ap3q “

¨
˚̊
˝

2 0 0 0
0 2 0 0
0 0 4 0
0 0 0 4

˛
‹‹‚,

B
r`s
p1q “

¨
˚̊
˝

1 `1 `2 0
0 1 0 0
0 0 1 0
0 0 0 1

˛
‹‹‚, B

r`s
p2q “

¨
˚̊
˝

1 0 0 0
`1 1 `2 0
0 0 1 0
0 0 0 1

˛
‹‹‚, B

r`s
p3q “

¨
˚̊
˝

1 0 0 0
0 1 0 0
`1 `2 1 0
0 0 0 1

˛
‹‹‚.100

As we show below, we can choose the functions W and Vpdq so that the
corresponding system (1) is a smooth Parseval frame of L2pPdzC0q

_, for d “
1, 2, 3 where C0 “ r´

1
8 ,

1
8 s

4, that is,

f “
ÿ

jě0

ÿ

|`1|,|`2|ď2j

ÿ

kPZ4

xf, ψ
pdq
j,`,kyψ

pdq
j,`,k,

for all f in L2 whose Fourier support is contained in PdzC0; convergence is
understood in the L2 norm.
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2.1. Smooth Parseval frame of cylindrical shearlets on L2pR4q

Our construction below extends the original 3-dimensional cylindrical shear-
let construction [19] by adapting some ideas from the standard shearlet con-105

struction [20].

We let φ P L2pRq be such that φ̂ P C8c with 0 ď φ̂ ď 1 and

φ̂puq “ 1 if u P r´
1

16
,

1

16
s, φ̂puq “ 0 if u P Rzr´

1

8
,

1

8
s. (3)

For ξ “ pξ1, ξ2, ξ3, ξ4q P R4, we let pΦpξ1, ξ2, ξ3, ξ4q “ pφpξ1qpφpξ2qpφpξ3qpφpξ4q and
we define the window function (in L2pR4)

W pξq “

b
pΦ2p2´2ξq ´ pΦ2pξq.

It follows that
pΦ2pξq `

ÿ

jě0

W 2p2´2jξq “ 1 for ξ P R4.

We notice that the functions W 2
j “ W 2p2´2j ¨q are supported in the Cartesian

coronae
Cj “ r´22j´1, 22j´1s4zr´22j´4, 22j´4s4 Ă R4

and that, by adding them up for j ě 0, we obtain a smooth tiling of the
frequency space R4 away from the origin:

ÿ

jě0

W 2p2´2jξq “ 1 for ξ P R4zr´ 1
8 ,

1
8 s

4.

In addition, we let v P C8pRq be such that supppvq Ă r´1, 1s

|vpu´ 1q|2 ` |vpuq|2 ` |vpu` 1q|2 “ 1 for |u| ď 1.

It is shown in [2] that there exist examples of functions φ and v satisfying the
properties described above.

For d “ 1, observing that |detAp1q| “ 26, that

pξ1, ξ2, ξ3, ξ4qA
´j
p1qB

r´`s
p1q “ p2´2jξ1,´2´2j`1ξ1`2´jξ2,´2´2j`2ξ1`2´jξ3, 2

´2jξ4q

and setting Vp1q “ vp ξ2ξ1 qvp
ξ3
ξ1
q, an element of the system (2) can be written as

ψ̂
p1q
j,`,kpξq “ 2´3jW p2´2jξq vp2j ξ2ξ1 ´ `1q vp2

j ξ3
ξ1
´ `2q e

2πiξA´j
p1q
B
r´`s

p1q
k, (4)

showing that the Fourier support of ψ
p1q
j,`,k is contained inside the region

Uj,` “ tξ P r´22j´1, 22j´1s4zr´22j´4, 22j´4s4 : | ξ2ξ1 ´ `12´j | ď 2´j ,

|
ξ3
ξ1
´ `22´j | ď 2´ju Ă R4. (5)
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Similar to conventional 3-dimensional shearlets [20], we obtain a smooth110

Parseval frame of cylindrical shearlets for L2pR4q using an appropriate combi-
nations of the pyramid-based systems (1) together with an additional coarse
scale system. To ensure that all elements of this combined system are smooth
and compactly supported in Fourier domain, we appropriately modify the ele-
ments of the shearlet system overlapping the boundaries of the regions P1, P2115

and P3. Hence a cylindrical shearlet system for L2pR4q is given by

Ψ “

!
rψ´1,k :k P Z4

)ď!
rψj,`,k,d :j ě 0, |`1| ď 2j , |`2| ă 2j , k P Z4, d “ 1, 2, 3

)

ď!
rψj,`,k :j ě 0, `1 “ ˘2j , `2 “ ˘2j , k P Z4

)
, (6)

consisting of:

• the coarse-scale cylindrical shearlets t rψ´1,k “ φp¨ ´ kq : k P Z4u, where φ
is given by (3);

• the interior cylindrical shearlets t rψj,`,k,d “ ψ
pdq
j,`,k : j ě 0, |`1| ă 2j , |`2| ă120

2j , k P Z4, d “ 1, 2, 3u, with the functions ψ
pdq
j,`,k given by (1);

• the boundary cylindrical shearlets t rψj,`,k,d : j ě 0, `1 “ ˘2j , |`2| ă 2j , k P

Z4, d “ 1, 2, 3u and tψ̃j,`,k : j ě 0 , `1, `2 “ ˘2j , k P Z4u, obtained by

joining together slightly modified versions of ψ
pdq
j,`,k and ψ

pd1q
j,`,k, d ‰ d1, for

`1, `2 “ ˘2j , after that they have been restricted in the Fourier domain125

to their pyramids Pd, Pd1 , respectively. Their precise definition is very
similar to [20, Sec. 3.1].

We remark that, by construction, the boundary shearlets t rψj,`,k : j ě
0, `1, `2 “ ˘2j , k P Z3u are compactly supported in Fourier domain. In ad-
dition, we can show that they are smooth in Fourier domain using essentially130

the same argument as [20, Sec. 3.1].
For j ě 1, ` “ p`1, `2q, `1 “ ˘2j , |`2| ă 2j we define

pψ̃j,`,k,1q
^pξq “

#
2´3j´4W p2´2jξq vp2j ξ2ξ1 ´ `1q vp2

j ξ3
ξ1
´ `2qh1pξq if ξ P P1

2´3j´4W p2´2jξq vp2j ξ1ξ2 ´ `1q vp2
j ξ3
ξ2
´ `2qh1pξq if ξ P P2

pψ̃j,`,k,2q
^pξq “

#
2´3j´4W p2´2jξq vp2j ξ1ξ2 ´ `1q vp2

j ξ3
ξ2
´ `2qh2pξq if ξ P P2

2´3j´4W p2´2jξq vp2j ξ1ξ3 ´ `1q vp2
j ξ2
ξ3
´ `2qh2pξq if ξ P P3

pψ̃j,`,k,3q
^pξq “

#
2´3j´4W p2´2jξq vp2j ξ2ξ1 ´ `2q vp2

j ξ3
ξ1
´ `1qh3pξq if ξ P P1

2´3j´4W p2´2jξq vp2j ξ1ξ3 ´ `1q vp2
j ξ2
ξ3
´ `2qh3pξq if ξ P P3

where hdpξq “ e2πiξ2
´2A´j

pdq
B
r´p`1,`2qs

pdq
k, for d “ 1, 2, 3.
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Similarly, for j ě 1, `1, `2 “ ˘2j we define

pψ̃j,`,kq
^pξq “

$
’&
’%

2´3j´4W p2´2jξq vp2j ξ2ξ1 ´ `1q vp2
j ξ3
ξ1
´ `2qh1pξq if ξ P P1

2´3j´4W p2´2jξq vp2j ξ1ξ2 ´ `1q vp2
j ξ3
ξ2
´ `2qh1pξq if ξ P P2

2´3j´4W p2´2jξq vp2j ξ1ξ3 ´ `1q vp2
j ξ2
ξ3
´ `2qh1pξq if ξ P P3.

For j “ 0, `1 “ ˘1, we define

pψ̃0,`1,0,k,1q
^pξq “

#
W pξq vp ξ2ξ1 ´ `1q vp

ξ3
ξ1
q e2πiξk if ξ P P1

W pξq vp ξ1ξ2 ´ `1q vp
ξ3
ξ2
q e2πiξk if ξ P P2

pψ̃0,`1,0,k,2q
^pξq “

#
W pξq vp ξ1ξ2 q vp

ξ3
ξ2
´ `1q e

2πiξk if ξ P P2

W pξq vp ξ1ξ3 q vp
ξ2
ξ3
´ `1q e

2πiξk if ξ P P3

pψ̃0,`1,0,k,3q
^pξq “

#
W pξq vp ξ2ξ1 q vp

ξ3
ξ1
´ `1q e

2πiξk if ξ P P1

W pξq vp ξ1ξ3 ´ `1q vp
ξ2
ξ3
q e2πiξk if ξ P P3.

For j “ 0, `1, `2 “ ˘1, we define

pψ̃0,`1,`2,kq
^pξq “

$
’&
’%

W pξq vp ξ2ξ1 ´ `1q vp
ξ3
ξ1
´ `2q e

2πiξk if ξ P P1

W pξq vp ξ1ξ2 ´ `1q vp
ξ3
ξ2
´ `2q e

2πiξk if ξ P P2

W pξq vp ξ1ξ3 ´ `1q vp
ξ2
ξ3
´ `2q e

2πiξk if ξ P P3

We have the following result whose proof is similar to [20].

Theorem 2.2. The shearlet system Ψ Ă L2pR4q, given by (6), is a Parse-
val frame for L2pR4q. Furthermore, the elements of this system are C8 and135

compactly supported in the Fourier domain.

For simplicity, in the following we will denote the cylindrical system of shear-
lets in (6) as

Ψ “ tψ̃µ : µ PMu, (7)

where M “MC YMI YMB are the indices associated with

• MC “ tpj, kq : j “ ´1, k P Z4u coarse-scale shearlets,

• MI “ tpj, `1, `2, k, dq : j ě 0, |`1| ă 2j , |`2| ă 2j , k P Z4, d “ 1, 2, 3u
interior shearlets,140

• MB “ tpj, `1, `2, k, dq : j ě 0, |`1| “ ˘2j , |`2| ă 2j , k P Z4, d “ 1, 2, 3u Y
tpj, `1, `2q : j ě 0 , `1, `2 “ ˘2j , k P Z4u boundary shearlets.

For f P L2pR4q, the cylindrical shearlet transform S is the mapping

f ÞÑ Spfq “ xf, ψ̃µy, µ PM.

8



We remark that, by a direct computation, we can write the shearlet functions
in (1) as

ψ
pdq
j,`,kpxq “ |detApdq|

j{2ψ
pdq
j,`

´
B
r`s
pdqA

j
pdqx` k

¯
(8)

where ψ̂
pdq
j,` pξq “ W

´
2´2jξB

r`s
pdqA

j
pdq

¯
Vpdqpξq depends mildly on j ě 0 and ` “

p`1, `2q P Z2, where |`1|, |`2| ď 2j . Using the support and regularity of W and
V , one can show that, for any ν P pNY t0uq4 and any N ą 0, there is Cν,N ą 0
independent of j, `, d such that

Bνxψ
pdq
j,` pxq ď Cν,N p1` |x|

2q´N . (9)

The proof of this estimate is presented in Appendix A.

3. Sparse cylindrical shearlets approximations

We start by defining the class of 4-dimensional cylindrical cartoon-like func-145

tions associated with our data model. This definition extends a similar definition
in the 3-dimensional setting that was introduced by some of the authors [19]
as a modification of the better known class of cartoon-like functions, originally
proposed by Donoho [21] to provide a simplified model of natural images.

3.1. Cylindrical cartoon-like functions150

For a fixed constant A ą 0, letMpAq be a class of indicator functions of sets
B Ă r0, 1s3 with C2-regular 2-manifold boundary BB “

Ť
α Σα, where α ranges

over a finite index set, and for each α, the surface Σα has a parametrization
Σα “ tpv,Eαpvqq : v P Vα Ă R2u, where Eα is a C2-regular function with values
on the open set Vα Ă R2, such that }Eα}C2pVαq ď A. Denoting with C2pr0, 1s3q
the collection of twice differentiable functions supported inside r0, 1s3, we define
the class of 4-dimensional cylindrical cartoon-like functions EpAq as the set

tf “ h0g0 ` h1XBg1 : XB PMpAq, h0, h1 P C2
`
r0, 1s3

˘
, g0, g1 P C

2pr´1, 1squ

where

fpx1, x2, x3, x4q “ h0px1, x2, x3qg0px4q ` h1px1, x2, x3qXBpx1, x2, x3qg1px4q
(10)

and }f}C2 “
ř
|α|ď2 }D

αf}8 ď 1.

3.2. Approximation theorems

Let tψ̃µuµPM be the the Parseval frame of cylindrical shearlets given by (7).
The cylindrical shearlet coefficients of f P L2pR4q are the elements of the se-
quence tsµpfq “ xf, ψ̃µy : µ P Mu. We denote by |sµpfq|pNq the N -th largest155

entry in modulus of this sequence.
We can now state our main theoretical result, whose proof is presented in

Sec. 3.3.
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Theorem 3.1. Let f P EpAq and tsµpfq “ xf, ψ̃µy : µ PMu be the sequence of
corresponding cylindrical shearlet coefficients. Then, for any N P N, there is a
constant C independent of µ and N such that

sup
fPEpAq

|sµpfq|pNq ď CN´1plogNq. (11)

Let fSN be the N -th term approximate of f P EpAq obtained from the
N -th largest coefficients of its cylindrical shearlet expansion, namely fSN “ř
µPIN

xf, ψ̃µyψ̃µ where IN ĂM is the set of indices corresponding to the N -th

largest entries of the sequence t|xf, ψ̃µy|
2 : µ P Mu. The approximation error

satisfies the estimate:

}f ´ fSN }
2
L2 ď

ÿ

mąN

|sµpfq|
2
pmq.

Thus, Theorem 3.1 implies the following result directly.

Theorem 3.2. Let f P EpAq and fSN be the N -th term approximation defined
above. Then, for N P N, there is a constant C independent of N and µ such
that

}f ´ fSN }
2
L2 ď CN´1plogNq2.

Remark. The decay estimate above is the same as the one found for 3-160

dimensional shearlets [22] which is the optimal rate in the class of 3-dimensional
cartoon-like functions [22, 23] and is faster than the optimal decay rateOpN´2{3q

valid for the class of 4-dimensional cartoon-like functions (cf.[23]). We conjec-
ture that OpN´1q is indeed the optimal decay rate in the class of 4-dimensional
cylindrical cartoon-like images. In particular, the decay rate of 4-d cylindrical165

shearlets is significantly faster than conventional 4-d wavelets whose decay rate
is OpN´1{3q.

3.3. Arguments and constructions

The general structure of the proof of Theorem 3.1 is similar to the structure
of [22]. However, to deal with the geometry of 4d cylindrical shearlets, we need170

to introduce new technical constructions and modify some critical steps of the
original arguments, especially in the proofs of Theorems 3.3 and 3.4 below.

To measure the sparsity of shearlet coefficients, we introduce the weak-`p

quasi-norm } ¨ }w`p which, for a sequence s “ psµqµPM , is defined as

}s}w`p “ sup
Ną0

N1{p|sµ|pNq

where |sµ|pNq is the N ´ th largest entry in the sequence s. In [24], this norm
is shown to be equivalent to

}s}w`p “

ˆ
sup
εą0

#tµ : |sµ| ą εuεp
˙1{p

.
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We intend to analyze the decay properties of the cylindrical shearlet co-
efficients txf, ψ̃µy : µ P Mu, where f is chosen according to our cylindrical
cartoon-like model (10), that is,

fpx1, x2, x3, x4q “ hpx1, x2, x3qXBpx1, x2, x3qgpx4q,

where XB PMpAq, h P C2pr0, 1s3q, g P C2pr0, 1sq.
We recall that discontinuities only occur in the x1x2x3 space. Thus, to carry

out our analysis, we smoothly localize the function f near dyadic squares in the
x1x2x3 space as follows. For a scale parameter j ě 0 fixed, we let

Qj “
"
Q “

„
k1
2j
,
k1 ` 1

2j


ˆ

„
k2
2j
,
k2 ` 1

2j


ˆ

„
k3
2j
,
k3 ` 1

2j


: k1, k2, k3 P Z

*

be the collection of dyadic cubes. For a non-negative C8 function with support
w in r´1, 1s3 we define a smooth partition of unity

ÿ

QPQj

wQpxq “ 1, x P R3,

where for each dyadic cube Q P Qj , wQpxq “ wp2jx ´ kq and k P Z3. We will

examine the cylindrical shearlet coefficients of fQ :“ fwQ, i.e., txfQ, ψ̃µy : µ P175

Mju, where Mj “ tµ P M : j is fixedu. As we show below, these coefficients
exhibit a different decay behaviour depending on whether the surface BB in-
tersects the support of wQ or not. Let Qj “ Q0

j YQ1
j be the disjoint union of

Q0
j “ tQ P Qj : BB X supp pwQq ‰ Hu and Q1

j “ tQ P Qj : BB X supp pwQq “

Hu. Notice each Q has side-length 3 ¨ 2´j , then |Q0
j | À 22j . Similarly, since180

supp pfq Ă r0, 1s4, then Q1
j À 23j . With this notation, we now state two theo-

rems that will be used to prove Theorem 3.1. Note that while the decay rate
in Theorem 3.3 is the same as the one found for 3-dimensional shearlets in [22],
the decay rate in Theorem 3.4 is different.

Theorem 3.3. Let f P EpAq. For Q P Q0
j , with j ě 0 fixed, the cylindrical

shearlet coefficients txfQ, ψ̃µy : µ PMju satisfy

}xfQ, ψ̃µy}w`1 ď C2´2j ,

where C is a constant independent of Q and j.185

Theorem 3.4. Let f P EpAq. For Q P Q1
j , with j ě 0 fixed, the cylindrical

shearlet coefficients txfQ, ψ̃µy : µ PMju satisfy

}xfQ, ψ̃µy}w`1 ď C2´7j{2,

where C is a constant independent of Q and j.

We show next how to apply Theorems 3.3 and 3.4 to prove Theorem 3.1
using an argument similar to [22]; we postpone their rather technical proofs to
the Appendix B.

We have the following corollary.190
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Corollary 3.5. Let f P EpAq and for j ě 0, consider the sequence of cylindrical
shearlets coefficients sjpfq “ txf, ψ̃µy : µ P Mju. Then there is a constant C
independent of j such that

}sjpfq}w`1 ď C.

Proof. Using Theorems 3.3, 3.4 and the triangle inequality for weak `1

spaces, we have

}sjpfq}w`1 ď
ÿ

QPQj

}xfQ, ψ̃µy}w`1

ď
ÿ

QPQ0
j

}xfQ, ψ̃µy}w`1 `
ÿ

QPQ1
j

}xfQ, ψ̃µy}w`1

ď C|Q0
j |2
´2j ` C|Q1

j |2
´7j{2

ď Cp22j2´2j ` 23j2´7j{2q ď C.

In the last step, we have used the observations that |Q0
j | ď C22j and |Q1

j | ď

C23j .
We next prove Theorem 3.1.195

Proof of Theorem 3.1. By Corollary 3.5, we have that

Rpj, εq “ #tµ PMj : |xf, ψ̃µy| ą εu ď Cε´1 (12)

For an interior shearlet ψ
pdq
j,`,k, given by (2), a direct computation using (8)

and (9) gives that

|xf, ψ
pdq
j,`,ky| “

ˇ̌
ˇ̌
ż

R4

fpxq| detApdq|
j{2ψ

pdq
j,`

´
B
r`s
pdqA

j
pdqx` k

¯
dx

ˇ̌
ˇ̌

ď 23j}f}8

ż

R4

ˇ̌
ˇψpdqj,`

´
B
r`s
pdqA

j
pdqx` k

¯ˇ̌
ˇ dx

ď 2´3j}f}8

ż

R4

|ψ
pdq
j,` pyq|dy

ď C2´3j . (13)

A very similar computation on the boundary shearlets gives the same estimate.
So, for a given ε ą 0, there is jε ą 0 such that |xf, ψ̃µpjqy| ă ε for each j ě jε.

Therefore, from (13), we have Rpj, εq “ 0 for j ą 1
3 log2pε

´1q ` log2pCq ą
1
3 log2pε

´1q. So, using (12), we have

#tµ PM : |xf, ψ̃µy| ą εu ď
ÿ

jě0

Rpj, εq “

1
3 log2pε

´1
qÿ

j“0

Rpj, εq ď Cε´1 log2pε
´1q.

Next, let n “ npεq “ #tµ P M : |xf, ψ̃µy| ą εu. Notice ε´1 À n. Therefore,
from (3.3), we have ε ď Cn´1 log2pε

´1q ď Cn´1 log2pnq. So, if |spfq|pNq is the
N -th largest coefficient, then |spfq|pNq ď CN´1 log2pNq and inequality (11)200

follows.

12



4. Numerical implementation of 4d cylindrical shearlet

This section covers the practical implementation of the 4d cylindrical shear-
let transform, including its inverse and adjoint transforms, which we apply in
Sec. 5 to illustrate the potentiality of cylindrical shearlets in numerical appli-205

cations. Numerical codes for the Matlab framework, with all the necessary
documentation, are available in Github [25].

Key ideas of the implementation generalize those of the 3d cylindrical shear-
let transform [19] and are illustrated by the decomposition scheme in Fig. 1.
The directional filters, in particular, are derived from the 3d discrete shearlets210

[17] since the transform only captures directional structures along the first three
dimensions. We point out though that the current implementation is meant as
a proof of concept and possible solutions to the evident inefficiencies are left for
future work.

In the following, we denote discrete values at a specific multi-index by using215

square brackets r¨s. Operations like the inner product x¨, ¨y, the discrete Fourier
transform Fpxqrξs “ pxrξs and its inverse F´1pxq “ qx are defined as usual, unless
otherwise specified. Given a discretized 4d object f and J, `, k fixed (notice that
these indexes depend on the resolution and user inputs), the forward transform
S can be computed using the following steps:220

1. Subband decomposition. Compute the 4d multilevel (up to scale J)

subband decomposition PJf “
`
f j

˘J
j“0

using an adapted Laplacian pyra-

mid scheme1. In the frequency domain, each subband corresponds to a
windowing:

pf jrks “ pf rksW jrks.

This operation corresponds to the first part of equation (4) in the con-
struction of the Parseval frame (see Sec. 2.1).

2. Directional filtering. Consistently with Definition 2.1 and similar to [17],

we construct the directional filters V
pdq
j,` , for given scale j, direction ` “

p`1, `2q and cylindrical hyperpyramid indexed by d, by first defining a225

window in the pseudo-spherical Fourier domain and then resampling on a
Cartesian grid. Note that directional filters are (approximately) symmet-
ric and, by construction, the decomposed signal does not need resampling.

3. Transform coefficients. Using the directional filters, the cylindrical
shearlet coefficients are thus given by:

Spfq :“ xf , ψ
pdq
j,`,ky “ f j ˚3d

qV pdqj,` rks “ F´1
´
pf jrksV pdqj,` rks

¯
, (14)

where k “ pk1, k2, k3, k4q P Z4 and ˚3d denotes the discrete convolution
along the first three dimensions.230

1This particular implementation of the Laplacian pyramid decomposition was originally
introduced for the surfacelet transform [26] and here we follow [19] in applying the same idea
to cylindrical shearlets.
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In step 2, the initial construction of the V
pdq
j,` ’s does not guarantee that the

sizes match the size of pf j . Hence, the necessary padding and many FFTs re-
quired slow down the algorithm considerably. In our experiments to perform
step 3, we computed the cylindrical (3d) convolution as a pointwise multiplica-
tion in the Fourier domain to reduce repetitive operations.235

f pf

pfJ

xf , ψpdqJ,`,¨y
d=

1,
2,
3. .

.

. .
.

pfJ´1

xf , ψpdqJ´1,`,¨y
d=

1,
2,
3. .

.

. .
.

. . .

xf , ψ0,¨y

pf0

pf1

xf , ψpdq1,`,¨y
d=

1,
2,
3. .

.

. .
.

Figure 1: Illustration of how the cylindrical shearlet transform decomposes an input signal.
The signal is split into J ` 1 subbands in the Fourier domain using the Laplacian pyramid
scheme (step 1). Next, cylindrical shearlet coefficients are computed for all scales, orientations
and hyperpyramids (step 3) using directional filters associated with the three hyperpyramids
and different shearing parameters ` “ p`1, `2q (created in step 2).

From the cylindrical shearlet coefficients (14), the original 4d signal f is
recovered using the inverse cylindrical shearlet transform S´1. By design of the
directional filters, for each scale j, we have:

3ÿ

d“1

ÿ

`

V
pdq
j,` “ 1.

Hence, the inverse transform is very straightforward to compute since we have:

3ÿ

d“1

ÿ

`

xf , ψ
pdq
j,`,¨y “

3ÿ

d“1

ÿ

`

F´1
´
pf jrksV pdqj,` rks

¯
“ f j ,

which in turn yields

f “ S´1
´
xf , ψ

pdq
j,`,ky

¯
:“ P´1

J

˜
3ÿ

d“1

ÿ

`

xf , ψ
pdq
j,l,¨y

¸
, (15)

where P´1
J is the inverse of the Laplacian pyramid-like scheme. This computa-

tion is very efficient as no convolutions or filters are needed.
Finally, we discuss how to implement the adjoint (or synthesis) operator S˚

whose computation is more involved than the inverse. First we let uj,`,drks be a240
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vector on the cylindrical shearlet coefficient domain. Then a direct computation
of the inner product gives:

@
Spfq,uj,`,d

D
“

Jÿ

j“0

3ÿ

d“1

ÿ

`

@
xf , ψ

pdq
j,`,¨y,uj,`,d

D

“

Jÿ

j“0

3ÿ

d“1

ÿ

`

xf j ˚3d
qV pdqj,` ,uj,`,dy

“

Jÿ

j“0

A
f j ,

3ÿ

d“1

ÿ

`

uj,`,d ˚3d Λ
pdq
j,`

E

“

A
f ,P˚J

˜
3ÿ

d“1

ÿ

`

uj,`,d ˚3d Λ
pdq
j,`

¸E

“

A
f ,S´1

´
uj,`,d ˚3d Λ

pdq
j,`

¯E
,

where Λ
pdq
j,` rk1, k2, k3, k4s :“ qV pdqj,` r´k1,´k2,´k3, k4s « qV pdqj,` rk1, k2, k3, k4s by

symmetry. The last step follows from equation (15) and the observation that,
unlike a traditional Laplacian pyramid decomposition (cf. [27]), the implemen-245

tation in [26] has the property that P˚J “ P
´1
J ; this simplifies the final imple-

mentation step. However, computing the adjoint is slower than the inverse and
the end result is slightly blurred due to the convolutions involved.

5. An application to dynamic tomography

In this section, we illustrate the numerical advantages of cylindrical shearlets250

vs. conventional 4d wavelets when dealing with spatio-temporal data by consid-
ering a challenging inverse problem, namely the reconstruction of a volume over
time associated with 4d (3d+time) dynamic CT.

CT is a classical inverse problem concerned with recovering the inner struc-
ture of an unknown object from external measurements of its X-ray attenuation255

intensity. This task is notoriously ill-posed, especially when measurements are
sparse. One way to overcome ill-posedness and, thus, to guarantee a stable
and unique solution, is to add regularization to the problem [28]. During the
last decade, several sparse regularization strategies were proposed in CT applica-
tions, based on the paradigm that, for any data class, there exists an appropriate260

sparsifying data representation, e.g., wavelets or shearlets.
Here we illustrate the application of a regularizer based on cylindrical shear-

lets to dynamic CT by adapting to the 3d+time setting a regularized recon-
struction method based on (conventional) shearlets proposed by some of the
authors in [16]. This reconstruction method was originally motivated by sparse265

imaging of phloem transport in plant stems and was shown to be extremely
competitive as compared to other methods from the literature.

A main advantage of this approach is that, unlike many existing meth-
ods [29, 30], is not limited to 2d data, and, unlike methods relying on filtered
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back-projection (FBP), cf. [31, 32, 33, 34], does not require a dense angular270

sampling. Additionally, we do not need to assume periodicity on the movement
as in [35], nor constant total brightness as compared to optical flow [36] nor mul-
tiple source–detector pairs, as in [37, 38]. We refer the interested reader to [39]
for a broader overview of image reconstruction in dynamic inverse problems.

5.1. Mathematical model275

Modern cone-beam CT scanners reconstruct a 3d volume of the interior at-
tenuation of the targeted object using 2d projection images collected from multi-
ple angle views. If this measurement process is repeated over time, the object of
interest can be understood as a 4d object. As observed above, given the sparse
measurements and the violation of the static assumption that is often assumed280

in classical CT reconstruction schemes, stable recovery of a moving object from
multiple sparse measurements over a time period requires regularization.

The novelty here is that, by applying 4d cylindrical shearlets for regulariza-
tion, we do not only regularize over the 3d spatial volume but also across time
frames within the same representation system. This property is expected to285

be a significant advantage with respect to separable representations due to the
superior approximation properties of cylindrical shearlets that were discussed
in Sec. 3. This improved behavior is confirmed by our numerical results.

Formally, for each time step t “ 1, ..., τ , let f trx1, x2, x3s P Rn`, with n “
nx1

nx2
nx3

, be a vector representing the unknown 3d object, Rt P Rpˆn a matrix
modelling the tomographic cone-beam measurement process and mt ` η “:
mη
t P Rp the data corrupted by measurement errors η “ ηptq. To further

simplify our notation we set:

f “

»
—–
f1
...
fτ

fi
ffifl , R “

»
—–

R1

. . .

Rτ

fi
ffifl , mη “

»
—–
mη

1
...
mη
τ

fi
ffifl .

Then a regularized solution f P Rnτ` is obtained by minimizing the functional

Jpfq “
1

2

››Rf ´mη
››2
2
` β}S f}1. (16)

Here, the regularization parameter β ą 0 balances between the data mismatch
term over the time steps and the `1-sparsity of 4d cylindrical shearlet coefficients290

of the solution.
A robust minimization method is the Primal-Dual Fixed Point (PDFP) al-

gorithm [40], which generalizes the well-known Iterative Soft-Tresholding Al-
gorithm (ISTA) to include non-negativity constraints for the solution f and
ensures convergence even when the sparsifying system does not form an or-
thonormal basis but a frame, which is the case with cylindrical shearlets as
shown in Sec. 2.1. By using PDFP, equation (16) can be minimized by iterating
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the following steps:

$
’’&
’’%

ypi`1q “ proj`
`
f piq ´ ρpRT Rf piq ´RT mηq ´ λS˚ rpiq

˘
,

rpi`1q “
`
I´ Sβ ρλ

˘`
S ypi`1q ` rpiq

˘
,

f pi`1q
“ proj`

`
f piq ´ ρpRT Rf piq ´RT mηq ´ λS˚ rpi`1q

˘
(17)

where Sβ ρλ denotes the soft-thresholding operator and proj` is the projection
onto the non-negative orthant. The parameters ρ and λ are bounded by prop-
erties of the functional J , which set a clear range for their values, while the
optimal choice of β is a notoriously difficult task.295

Here, we adopt an automated tuning of β based on the given a priori sparsity
level of the cylindrical shearlet coefficients. This method was originally intro-
duced in [41] using Haar wavelet regularization in traditional 2d tomography
regularization. In a recent work, some of the authors modified this method
for the 2d+time dynamic tomography setting using classical shearlets [16] and300

3d+time (complex) wavelets [42], where they also provided further justification
for this model. The detailed steps of this method are found in Algorithm 1
in [16], where the necessary modifications from 3d to 4d apply.

5.2. Simulated test data

Our regularized reconstruction approach is applied to a simulated 4d to-305

mography dataset consisting of repeated measurements of a custom ellipsoid
phantom created using the 3d phantom from [43]. The intensity values of the
two larger ellipsoids change linearly in the interval r0, 1s while the intensities
of the multiple smaller ellipsoids follow a sinusoidal pattern with offset phases.
The codes for generating the data are included in the Github repository [25]. We310

remark that the phantom is consistent with our model of cylindrical cartoon-like
functions as the spatial boundaries remain fixed.

The spatial dimensions of the volume are 256 ˆ 256 ˆ 64 voxels2 and we
simulated in total 16 sparse angle cone-beam sinograms (i.e., corresponding to
16 different time frames). We tested varying number of evenly spaced projection315

angles: in Sec. 5.3, we report results with 24, 30, 60 and 90 equispaced angles.
The matrices Rt (and therefore R) simulating the geometry of a cone-beam
CT are generated using the HelTomo Toolbox [44], build upon the ASTRA
Toolbox [45]. All changes depend on the parameter ω P r0, 2πs and to better
approximate continuous motion and realistic measurement conditions we sample320

it as follows. First, given the number of desired measurements (here τ “ 16), we
divide the whole period r0, 2πs into 2τ´1 subintervals and discard every second
one leaving a total of τ disjoint subintervals. Then, for each t, we further sample

the corresponding subinterval to obtain 15 values of ωptq “ pω
ptq
1 , . . . , ω

ptq
15 q which

are used to simulate a sinogram mt in 15 stages. The middle value from each325

2While seemingly small, storing this 4d object in single precision already requires roughly
260 MB.
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subinterval (i.e., ω
ptq
8 for each t) is taken as the ground truth f t to benchmark

the reconstructions. The sampling procedure is illustrated in Fig. 2.
The jump in values of ω between measurements simulate a pause between

consecutive measurement cycles and allows for more noticeable changes between
time frames, as illustrated in Fig. 3, which contains several horizontal (xy-330

plane) slices of the phantom at different time frames t covering the full range of
changes. In comparison, changes allowed within each t are less severe but not
negligible as in practice the measurement device cannot measure all projections
simultaneously.

0 2π. . . . . .

hkkkikkkj
ωp1q

m1

hkkkikkkj
ωp2q

m2

hkkkikkkj
ωptq

mt

Figure 2: Illustration of how multiple values of ω are used to simulate measurements at each
time frame t.

Finally, to avoid inverse crime, each individual projection image is generated335

at twice the desired resolution, down-sampled and then corrupted by white
Gaussian noise (0 mean and 5% variance).

t “ 1 t “ 4 t “ 7

t “ 10 t “ 13 t “ 16

Figure 3: Interior (xy-plane, z “ 28) slices of the phantom as it evolves over time steps
t “ 1, 4, 7, 10, 13, 16.
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5.3. Results

We report here the numerical results of our reconstruction algorithm for
dynamic CT. Results comprise reconstructions from a varied number of sparse340

projection angles. For simplicity the same evenly spaced angular sampling is
used for every time frame.

For comparison purposes, we implemented also a regularized reconstruction
algorithm based on the 4d discrete wavelet transform (DWT). The regularized
model with 4d DWT is obtained by replacing S with a DWT in equation (17)345

and changing the values of λ and β accordingly. The 4d DWT is implemented
by extending the 3d DWT from Matlab’s Wavelet Toolbox and it is available
on GitHub [46]. The wavelet decomposition, based on Daubechies 2 filters, is
performed using 4 scales. The cylindrical shearlet transform uses 3 scales with
the number of directions in each pyramid being 36, 16 and 4 as the scale gets350

coarser. We found this setting to offer a good balance between quality and
efficiency.

Due to the high memory requirements of the 4d cylindrical shearlet trans-
form, the computations were carried out on the Turso cluster at the University
of Helsinki, using 16 CPU cores each equipped with 16GB memory. The 4d355

wavelet computations were performed on the same cluster but required just
8GB of memory in total.

In Fig. 4 and Fig. 5, we display selected interior slices of our phantom recon-
structed using the proposed algorithm and either 4d wavelets or 4d cylindrical
shearlets for regularization. Fig. 4 displays a varying number of projections and360

the ground truth at a fixed time frame (t “ 4). Fig. 5 displays multiple time
frames including the ground truth with the number of projections fixed to 30.
To highlight the differences between the two regularization approaches, we dis-
play in Fig. 6 the absolute difference between the reconstructions and the true
objective. In this figure, the time frame is again fixed at t “ 4.365

In all figures, we only display an xy-plane of the reconstruction at height
z “ 28. Additionally, we include as an insert a zoomed-in sub-region containing
smaller key details to highlight the reconstruction quality at the discontinuities.
Reconstructions along other cross-sections of the solid exhibit similar properties.
Colors are scaled uniformly so that all images in Figures 4 and 5 (and 3) are370

comparable. The color values in Fig. 6 are only comparable within that figure.
We report numerical error metrics in Table 1. Specifically, we computed the

Peak-Signal-to-Noise-Ratio (PSNR) comparing the whole 4d reconstruction to
the known ground truth. In addition, we used the recently introduced Haar-
wavelet Perceptual Similarity Index (HPSI) [47], originally proposed for images375

(i.e., 2d data) and here adapted to handle our higher dimensional data: namely,
for each value of t, we compare the central slice to the central slice of the ground
truth and report the mean value across all time frames. Finally, we compute
the 3d Structural SIMilarity index (SSIM) [48] which we also average across all
time frames. This last error metric is arguably the most faithful among those380

in Table 1 as it considers the whole 4d data (unlike HPSI) and, to an extent,
the geometry (unlike PSNR).
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Table 1: Numerical error estimates of the different reconstructions.

Projections PSNR
Mean Mean
HPSI SSIM

Daubechies 2-
wavelets

90 29.0 0.500 0.815
60 28.3 0.467 0.798
30 27.6 0.429 0.782
24 25.3 0.381 0.716

Cylindrical
shearlets

90 31.1 0.576 0.841
60 30.6 0.547 0.826
30 29.8 0.500 0.801
24 29.4 0.487 0.789

Results show that overall regularization based on cylindrical shearlet yields
a better reconstruction performance both in terms of visual quality and quanti-
tative performance metrics. Visual differences in the reconstructions are more385

pronounced for sparse projections (see Fig. 5, and the two rightmost columns
of Fig. 4) than for denser ones (Fig. 4, left columns). In particular, cylindrical
shearlet reconstructions are consistently better at suppressing noise without pro-
ducing excessive blur near edges while wavelet regularized solutions are notably
noisier. Indeed, wavelet-based reconstructions suffer from salt-and-pepper-like390

noise where the attenuation level is strongly under- or overestimated in some
points (see for example center row of Fig. 4 or 6). The outer shell of the phantom
is relatively well reconstructed by both regularized approaches.

Quantitative error measures in Table 1 show that cylindrical shearlets are
better performing under all the error metrics. Even with just 30 projections,395

the cylindrical shearlet reconstruction outperforms the best wavelet reconstruc-
tion (90 projections) based on most of these metrics. We explain this behavior
with the superior approximation properties of cylindrical shearlets, as shown
above in Theorem 3.1, that are manifested by their improved noise suppression
as compared to wavelets. We also observe that cylindrical shearlets-based re-400

constructions are highly consistent across the number of projections; that is,
reducing the number of projections does not result in a significant worsening of
reconstruction (the PSNR drops less than 2dB as the number of projection goes
from 90 to 24) and visual quality. By contrast, wavelet-based reconstructions
degrade rapidly as the number of projects decreases (the PSNR drops by over 2405

dBs as the number of projections go from 24 to 30) and visual inspection shows
the appearance of salt-and-pepper-like artefacts.

Finally, we remark that while none of our error metrics fully accounts for the
geometry of 4d spatio-temporal data, SSIM is able to assess in some form the
overall reconstruction quality of 3d moving volumes. Indeed, SSIM is applied410

in the literature to measure video approximations (2d + time setting) [49]. By
contrast, PSNR only accounts for pointwise values with no geometric consider-
ations and HPSI can be computed from 2d slices only (no extension to higher
dimension is currently available). In the (medical) literature, the quality of 4d
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Figure 4: Interior slices at time frame t “ 4 of the ground truth (top row), wavelet-regularized
solution (center row) and cylindrical shearlet regularized solution (bottom row). On different
columns there are reconstructions from 90, 60, 30 and 24 projections.

CT is often assessed using different correlation-type metrics (cf. [50, 51]) which415

do not consider the geometry either. The topic of image and video quality as-
sessment is a vast and active research area (cf. [52, 53]); unfortunately, no fully
satisfactory quality metric for 3d + time data is currently available.

6. Discussion and conclusion

We have introduced a new construction of multiscale representations on420

L2pR4q that is especially designed for the efficient approximations of spatio-
temporal data. Our theoretical analysis shows that this method provides highly
sparse representations in the class of 4d-cartoon-like images, outperforming con-
ventional multiscale representations. We have also illustrated the practical ad-
vantages of the new representation on a challenging computational problem of425

regularized reconstruction in dynamic tomography from a small number of pro-
jections. Our numerical results show that our regularized reconstruction based
on cylindrical shearlets outperforms a similar algorithm based on wavelets both
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Figure 5: Interior slices of the ground truth (top row), wavelet-regularized solution (center
row) and cylindrical shearlet regularized solution (bottom row) evolving over time frames
t “ 10 (left), t “ 13 (middle) and t “ 16 (right). All reconstructions are from 30 projections.

in terms of visual quality and quantitative performance metric when projections
are sparse. While our result was demonstrated using simulated data, we expect430

that a comparable performance advantage will hold using experimental data
and will be investigated in a future work by extending our study of phloem
transport in plant stems [16]. In fact, the results of our study suggest a num-
ber of theoretical extensions and numerical refinements to further exploit the
potential of cylindrical shearlets in numerical applications.435

As mentioned above, the model of cylindrical cartoon-like functions adopted
in this paper is a rather crude simplification of temporal sequences of 3-dimensional
images found in applications, as it does not allow discontinuities with respect
to the temporal variable. While the phantom we used in our simulations was
designed to fit this model, realistic applications of dynamic CT typically involve440

boundaries in the spatial domain that change in time so that our image model
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Figure 6: Absolute difference images |f recn ´ f true| at time frame t “ 4 of the wavelet
regularized solution (top row) and cylindrical shearlet regularized solution (bottom row). On
different columns there are reconstructions from 90, 60, 30 and 24 projections. Note that the
color scaling is different in this figure.

would need to be modified.
We are confident that the proofs presented in this work can be extended with

a relatively simple argument to include generalizations of the cylindrical cartoon-
like model such as the situation of a moving solid object, e.g., a moving ball.445

In this case, the boundary of the object is (smoothly) displaced from a time-
frame to the next one, without changes in the discontinuous boundary other
than its location being rigidly translated (see Fig. 7 for an illustration in R3).
To model such functions on R4, we may consider a modified cylindrical image
model on L2pR4q where fpx1, x2, x3, x4q “ hppx1, x2, x3q ´ tpx4qqgpx4q where h450

is a compactly supported C2 function away from C2 boundaries, g P C2pr´1, 1s
and t is a smooth translation function which depends on x4 only. The Fourier
transform of f is of the form pfpξ1, ξ2, ξ3, ξ4q “ phpξ1, ξ2, ξ3qGpξ1, ξ2, ξ3, ξ4q where
G is smooth and bounded. From this observation, it follows that one can adapt
essentially the same arguments presented above to derive a result similar to455

Theorems 3.1 and 3.2. A rigorous discussion of this extension of our proof
would require more technical details that are beyond the scope of this paper
and, for reasons of space, are left to a future work.

A downside of the current implementation of 4d cylindrical shearlets is the
higher computational cost compared to 4d wavelets, due to the increased com-460

plexity of the transform. For the data size we considered, the computational
burden is noticeable: the algorithm walltime for cylindrical shearlets is approxi-
mately 21 hours in total or 650 seconds per iteration, while for the wavelets total
computing time is 1.5 hours or 22 seconds per iteration. A single computation of
the forward, inverse or adjoint transform is manageable even on a regular desk-465

top computer but iterative schemes usually require applying this computation
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Figure 7: Modified 3-dimensional cartoon-like image. The discontinuous boundary curve in
the xy plane is rigidly displaced as a function of the z coordinate.

hundreds of times, making the whole procedure very time consuming. On the
other hand, the different number of X-ray projections (24, 30, 60 or 90) have
a relatively minor impact on the overall computing time which is dominated
by the cost of applying the wavelet or shearlet forward and adjoint transforms.470

Nonetheless, we remark that our implementation of 4d cylindrical shearlets is
presented here as a proof of concept without a systematic effort to optimize the
computational cost which would be beyond the scope of this paper. However,
the parallel nature of the transform indicates a potentially significant speedup,
for example, by utilizing GPU computing[54, 55].475

Finally, we recall that deep learning strategies have gained increasing pop-
ularity in inverse problems including CT, where they have been applied very
successfully often in combination with model-based principles such as sparsity
models (e.g., [16]). We expect that the ideas presented in this paper have also
the potential of being successfully integrated into a deep learning strategy lead-480

ing to a new generation of reconstruction algorithms for dynamic CT integrating
learning- and model-based principles.
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[25] T. Heikkilä, 4d Cylindrical Shearlet Transform, Inverse and Adjoint560

for Matlab, https://github.com/tommheik/4dCylindricalShearlet

(2021).

[26] Y. M. Lu, M. N. Do, Multidimensional directional filter banks and sur-
facelets, IEEE Transactions on Image Processing 16 (4) (2007) 918–931.

26

https://doi.org/10.1109/JPROC.2003.817868
https://doi.org/10.1051/mmnp/20138106
https://doi.org/10.1051/mmnp/20138106
https://doi.org/10.1051/mmnp/20138106
https://github.com/tommheik/4dCylindricalShearlet


[27] P. J. Burt, E. H. Adelson, The Laplacian pyramid as a compact image565

code, in: Readings in computer vision, Elsevier, 1987, pp. 671–679.

[28] H. W. Engl, M. Hanke, A. Neubauer, Regularization of inverse problems,
Springer Science & Business Media, 1996.

[29] A. Katsevich, An accurate approximate algorithm for motion compensation
in two-dimensional tomography, Inverse Problems 26 (6) (2010) 065007.570

[30] S. Roux, L. Desbat, A. Koenig, P. Grangea, Exact reconstruction in 2D
dynamic CT: Compensation of time-dependent affine deformations, Phys.
Med. Biol. 49 (2004) 2169–2182.

[31] S. E. Blanke, B. N. Hahn, A. Wald, Inverse problems with inexact forward
operator: iterative regularization and application in dynamic imaging, In-575

verse Problems 36 (12) (2020) 124001.

[32] B. Hahn, Reconstruction of dynamic objects with affine deformations in
computerized tomography, Journal of Inverse and Ill-posed Problems 22
(2014) 323–339.

[33] B. Hahn, Null space and resolution in dynamic computerized tomography,580

Inverse Problems 32 (2016) 025006.

[34] B. Hahn, E. Quinto, Detectable singularities from dynamic Radon data,
SIAM Journal on Imaging Sciences 9 (2016) 1195–1225.

[35] E. L. Ritman, Cardiac computed tomography imaging: a history and some
future possibilities, Cardiol. Clin. 21 (4) (2003) 491–513.585

[36] M. Burger, H. Dirks, L. Frerking, A. Hauptmann, T. Helin, S. Siltanen, A
variational reconstruction method for undersampled dynamic x-ray tomog-
raphy based on physical motion models, Inverse Problems 33 (12) (2017)
124008.

[37] J. Hakkarainen, Z. Purisha, A. Solonen, S. Siltanen, Undersampled dy-590

namic X-ray tomography with dimension reduction Kalman Filter, IEEE
Transactions on Computational Imaging 5 (3) (2019) 492–5012.

[38] E. Niemi, M. Lassas, A. Kallonen, L. Harhanen, K. Hämäläinen, S. Silta-
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A. Proof of inequality (9)

The argument we present below follows an argument in [20, Prop. 10] or [56,
Lemma 4.5].655

We start by observing that, for any j ě 0, ` “ p`1, `2q P Z2 with |`1|, |`2| ď
2j , d P t1, 2, 3u,

ψ̂
pdq
j,` pξq “W

´
2´2jξB

r`s
pdqA

j
pdq

¯
Vpdqpξq

is a smooth, bounded and compactly supported function. Hence, using the

inverse Fourier transform, we can write ψ
pdq
j,` pxq “

ş
R̂4 e

2πiξxψ̂
pdq
j,` pξq dξ and, thus,

we have that, for any x P R4,

ˇ̌
ˇψpdqj,` pxq

ˇ̌
ˇ ď

ż

supp tψ̂
pdq
j,` u

ˇ̌
ˇψ̂pdqj,` pξq

ˇ̌
ˇ dξ ď m

´
supp tψ̂

pdq
j,` u

¯
}ψ̂
pdq
j,` }8, (A.1)

where m
´

supp tψ̂
pdq
j,` u

¯
denotes the Lebesgue measure of the support of ψ̂

pdq
j,` .

Performing integration by parts and using the regularity of ψ̂
pdq
j,` , we also

observe that, for any N P N,
ż

supp tψ̂
pdq
j,` u

e2πiξx∆N

´
ψ̂
pdq
j,`

¯
pξq dξ “ p2πq2N |x|2Nψ

pdq
j,` pxq, (A.2)

where ∆N “
ř4
i“1

B
2N

Bξ2Ni
. Using (A.1) and (A.2), it follows that
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Using the conditions on the support of W and Vpdq, we observe that for d “
1 we have that |ξ2|, |ξ3| ď |ξ1| and 22j´4 ď |22jξ1|, |2

2jξ4| ď 22j´1. Hence
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|ξj | ď 2´1 for j “ 1, 2, 3, 4, which shows that m
´

supp tψ̂
p1q
j,` u

¯
ă C, where C

is a constant independent of j, `. The same property holds for d “ 2, 3 using a
similar argument. Thus, combining this observation with (A.3), it follows that
there is a constant CN , independent of j, `, d such that

ψ
pdq
j,` pxq ď CN p1` |x|

2q´N .

To prove a similar estimate for the partial derivatives of ψ
pdq
j,` , we start by

using the properties of the Fourier transform so that, for any ν P pNYt0uq4 and

any i P t1, 2, 3, 4u, we write the partial derivatives of ψ
pdq
j,` as660

Bνxiψ
pdq
j,` pxq “

ż

R̂4

p2πiξiq
νe2πiξxψ̂

pdq
j,` pξq dξ.

The rest of the argument is now very similar to the argument we used for ψ
pdq
j,` .

Similar to (A.1), denoting Sj,`,d “ supp tψ̂
pdq
j,` u, we have that
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ˇBνxiψ
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where again the quantity sup |ξνi ψ̂
pdq
j,` pξq| is bounded by a constant independently

of j, `, d, due to the conditions on the support of W and Vpdq.
We can similarly derive an analogues of (A.2) by applying integration by

parts to the integral

ż

supp tψ̂
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j,` u
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¯
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and using the observation that, for any β P pNY t0uq4, we have

B
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¯
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where the constants Cδ,γ are independent of j, `, d. Finally, combining the two
estimates as in (A.3), we conclude that there is a constant Cν,N independent of
j, `, d such that, for any N P N, we have

Bνxψ
pdq
j,` pxq ď Cν,N p1` |x|

2q´N .
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B. Proofs of Theorems 3.3 and 3.4

Here we assume the notation introduced in Sec. 3 where fQ “ f wQ, for
f P EpAq. We remark that the localization window wQ acts in the x1x2x3 space.
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Below, we will select wQ appropriately so that we can analyze the discontinuity
surface BB locally. Recall that the surface is C2 regular by hypothesis.670

Hence, by choosing j ą j0 sufficiently large, the scale 2´j is small enough
so that, over a cube Q of side 2´j , the surface BB may be parametrized as
x1 “ Epx2, x3q or x2 “ Epx1, x3q or x3 “ Epx1, x2q, where the function Ei, for
i “ 1 or i “ 2 = i “ 3, is twice continuously differentiable.

For simplicity, we assume that this surface has parametrization

x1 “ Epx2, x3q, |x2|, |x3| ď 2´j ,

as the other cases can be analyzed with a very similar argument. By a suitable675

translation, we may assume that the surface contains the origin, that is k “
p0, 0, 0q, and the normal direction of the surface at p0, 0, 0q is p1, 0, 0q. This
is equivalent to assuming that Ep0, 0q “ Ex2

p0, 0q “ Ex3
p0, 0q “ 0. There is

no loss in generality in analyzing only this case since the situation where the
surface does not contain the origin or has a different normal direction can be680

easily converted into this case by translation and rotation. So, the function fQ
is localized on Q “ r0, 2´js3. To simplify notation, for a function gpxq with
x P R2 and m “ pm1,m2q with 0 ď |m| “ m1 `m2 ď 2, we will write B

m

Bxm g as
gm.

The second order Taylor expansion of E around p0, 0q reduces to the remain-
der alone, that is,

Epx2, x3q “
1

2
pEp2,0qpcqx

2
2 ` 2Ep1,1qpcqx2x3 ` Ep0,2qpcqx

2
3q,

where c “ pc2, c3q P r´2´j , 2´js2. Therefore, for j ą j0 we have

|Epx2, x3q| ď 2´2jp}Ep2,0q}8 ` }Ep1,1q}8 ` }Ep0,2q}8q.

We will discuss the case j ď j0 further below.685

Recall that f has the form fpx1, x2, x3, x4q “ hpx1, x2, x3qXBpx1, x2, x3qgpx4q
and we want to estimate the decay of f near the surface of discontinuity. Hence,
for j P Z, we define the surface fragment as the function

hQpx1, x2, x3q “ wp2jxqhpx1, x2, x3qXtx1ąEpx2,x3qupx1, x2, x3q (B.1)

where w P C8pr´1, 1s3q is a non-negative window function. That is, wp2j ¨q is
the window function wQ announced above.

Note that h P C2pr0, 1s3q, hence hQ is supported on r0, 2´js3. Consequently,
we define the localized version of f as fQpx1, x2, x3, x4q “ hQpx1, x2, x3qgpx4q.

B.1. Analysis of the Surface Fragment690

We aim at deriving L2 estimates for the elements of the Parseval frame
of cylindrical shearlets against fQ “ hQg, where hQ is the the surface frag-
ment (B.1). For our analysis below, it will be sufficient to consider the interior
cylindrical shearlets (4) associated with the pyramidal region P1. Boundary
shearlets and interior shearlets in the regions P2 and P3 satisfy similar support695
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and regularity conditions, so that the corresponding estimates against fQ are
very similar.

In the following, we will express the first three coordinates of ξ P R4 in
spherical coordinates, so we write pξ1, ξ2, ξ3q “ pρ cos θ sinφ, ρ sin θ sinφ, ρ cosφq
where ρ ą 0, θ P r0, 2πq and φ P r0, πs. Since we only consider the region P1,700

we can assume that φ P
“
π
4 ,

3π
4

‰
θ P

“
´π

4 ,
π
4

‰
. We additionally remark that the

variables ξ2 and ξ3 are symmetric in P1; thus, we may assume that |`1| ď |`2|.
For ξ P P1 Ă R4, j ě 0, |`1| ď |`2| ď 2j , we let

Γj,`pξq “W p2´2jξq vp2j ξ2ξ1 ´ `1q vp2
j ξ3
ξ1
´ `2q. (B.2)

Using this notation, the interior shearlets (2) associated with the pyramidal
region P1 may be written as

ψ̂
p1q
j,`,kpξq “ 2´3jΓj,`pξq e

2πiξA´j
p1q
B
r´`s

p1q
k.

We have the following Lemma whose proof follows by direct calculation
and is very similar to Sec.4.3 in [22]. Below, we use the multi-index notation
m “ pm1,m2,m3,m4q P N4 with |m| “ m1 `m2 `m3 `m4 and write xm “705

xm1
1 xm2

2 xm3
3 xm4

4 and B
m

Bξm
pf “ B

m1

Bξ
m1
1

B
m2

Bξ
m2
2

B
m3

Bξ
m3
3

B
m4

Bξ
m4
4

pf .

Lemma B.1. Let hQ be the surface fragment defined by (B.1) and ĥQ be the
corresponding Fourier transform. Let

pξ1, ξ2, ξ3q “ pr sin θ1 cosφ1,´r cos θ1,´r sin θ1 sinφ1q Ă P1

(which implies |φ1| ď π{4). We then have the following estimates.

(a) If the support of hQ does not intersect the surface BB, then

ż 2j`1

22j´4

ż 2π

0

ˇ̌
ˇ̌ B

m1

Bξm1
1

Bm2

Bξm2
2

Bm3

Bξm3
3

phQpr, θ1, φ1q
ˇ̌
ˇ̌
2

dθ1dr ď C2´2jm12´12j

(b) If hQ intersects the surface BB and | sinφ1| ď 21´j, then

ż 2j`1

22j´4

ż 2π

0

ˇ̌
ˇ̌ B

m1

Bξm1
1

Bm2

Bξm2
2

Bm3

Bξm3
3

phQpr, θ1, φ1q
ˇ̌
ˇ̌
2

dθ1dr ď C2´2jm12´7j

(c) If hQ intersects the surface BB and | sinφ1| ě 21´j, then

ż 2j`1

22j´4

ż 2π

0

ˇ̌
ˇ̌ B

m1

Bξm1
1

Bm2

Bξm2
2

Bm3

Bξm3
3

phQpr, θ1, φ1q
ˇ̌
ˇ̌
2

dθ1dr ď C2´2jm12´12j | sinφ1|´5

Note that, in the above lemma, the notation

Bm1

Bξm1
1

Bm2

Bξm2
2

Bm3

Bξm3
3

phQpr, θ1, φ1q
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means that we first compute B
m1

Bξ
m1
1

B
m2

Bξ
m2
2

B
m3

Bξ
m3
3

phQpξ1, ξ2, ξ3q and next we make the

change of variable pξ1, ξ2, ξ3q “ pr sin θ1 cosφ1,´r cos θ1,´r sin θ1 sinφ1q.
We also have the following Lemma whose proof follows by direct calculation710

and is very similar to [22, Lemma 2.5].

Lemma B.2. Let Γj,` be defined by (B.2). Then, for j ě 1, |`1| ď |`2| ď 2j

and m “ pm1,m2,m3,m4q P N4 we have
ˇ̌
ˇ̌ B

m1

Bξm1
1

Bm2

Bξm2
2

Bm3

Bξm3
3

Bm4

Bξm4
4

Γj,`pξq

ˇ̌
ˇ̌ ď Cm2´m1j2´|m|jp1` |`2|q

m1 .

Observing that the supports of Γj,`1,`2 and Γj,`11,`2 are disjoint provided that
`1 ‰ `11, it follows from Lemma B.2 that

|`2|ÿ

`1“´|`2|

ˇ̌
ˇ̌ B

m1

Bξm1
1

Bm2

Bξm2
2

Bm3

Bξm3
3

Bm4

Bξm4
4

Γj,`pξq

ˇ̌
ˇ̌ ď Cm2´m1j2´|m|jp1` |`2|q

m1 .

We can now prove the following result.

Theorem B.3. Let fQ “ hQg, where hQ is the surface fragment given by (B.1),
g P C2pr´1, 1sq and Γj,` is given by (B.2). Let mf “ pmf1 ,mf2 ,mf3 ,mf4q and
mγ “ pmγ1 ,mγ2 ,mγ3 ,mγ4q be multi-indexes. Then there exists a constant C715

independent of j, ` such that

|`2|ÿ

`1“´|`2|

ż

R4

ˇ̌
ˇ̌ B

mf

Bξmf
pfQpξq

ˇ̌
ˇ̌
2 ˇ̌
ˇ̌ B

mγ

Bξmγ
Γj,`pξq

ˇ̌
ˇ̌
2

dξ

ď C2´mγ1 j2´|mγ |jp1` |`2|q
mγ1 2´2jmf1

`
2´4j

`
1` |`2|

´5
˘
` 2´9j

˘
.

Proof. Recall that the support of Γj,` is contained in P1 and depends
on the supports of W and v. So, for ξ “ pξ1, ξ2, ξ3, ξ4q P supp Γj,`, we have

ξi P
“
´22j´1, 22j´1

‰
z
“
´22j´4, 22j´4

‰
for i “ 1, 2, 3, 4,

ˇ̌
ˇ2j ξ2ξ1 ´ `1

ˇ̌
ˇ ď 1 andˇ̌

ˇ2j ξ3ξ1 ´ `2
ˇ̌
ˇ ď 1. By applying a change of variables into spherical coordinates, we

can write pξ1, ξ2, ξ3q “ pr sin θ1 cosφ1,´r cos θ1,´r sin θ1 sinφ1q, where we haveˇ̌
ˇ´2j cot θ1

cosφ1 ´ `1

ˇ̌
ˇ ď 1 and

ˇ̌
´2j tanφ1 ´ `2

ˇ̌
ď 1. Thus,

r2 “ ξ21 ` ξ
3
2 ` ξ

2
3 “ ξ21

´
1` p cot θ

1

cosφ1 q
2 `

`
tanφ1

˘2¯

and 22j´4 ď r ď 22j`2. We also remark that |φ1| ď π{4 since Γj,` is supported
on P1. In addition, from p´1 ´ `2q2

´j ď tanφ1 ď p1 ´ `2q2
´j and the Taylor

expansion of the tangent function, we see that φ1 must be contained in an
interval Iφ1 of length C2´j . Hence, using Lemma B.2 we have720

|`2|ÿ

`1“´|`2|

ż

pR4

ˇ̌
ˇ̌ B

mf

Bξmf
pfQpξq

ˇ̌
ˇ̌
2 ˇ̌
ˇ̌ B

mγ

Bξmγ
Γj,`pξq

ˇ̌
ˇ̌
2

dξ
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ď Cmγ2´mγ1j2´|mγ |jp1` `2q
mγ1

ż

pR4

ˇ̌
ˇ̌ B

mf

Bξmf
pfQpξq

ˇ̌
ˇ̌
2

dξ

ď Cmγ2´mγ1 j2´|mγ |jp1` `2q
mγ1

ż

pR4

ˇ̌
ˇ̌ B

mf1

Bξ
mf1
1

Bmf2

Bξ
mf2
2

Bmf3

Bξ
mf3
3

phQpξ1, ξ2, ξ3q
ˇ̌
ˇ̌
2

dξ

“ Cmγ2´mγ1 j2´|mγ |jp1` `2q
mγ1

ż

Iφ1

ż 22j`2

22j´4

ż 2π

0

r2| sin θ1|

ˆ

ˇ̌
ˇ̌ B

mf1

Bξ
mf1
1

Bmf2

Bξ
mf2
2

Bmf3

Bξ
mf3
3

phQpr, θ1, φ1q
ˇ̌
ˇ̌
2

dθ1drdφ1

ď Cmγ2´mγ1 j2´|mγ |jp1` `2q
mγ1 24j

ˆ

ż

Iφ1

ż 22j`2

22j´4

ż 2π

0

ˇ̌
ˇ̌ B

mf1

Bξ
mf1
1

Bmf2

Bξ
mf2
2

Bmf3

Bξ
mf3
3

phQpr, θ1, φ1q
ˇ̌
ˇ̌
2

dθ1drdφ1.

Next, we apply Lemma B.1. In the no-intersection case we have

|`2|ÿ

`1“´|`2|

ż

pR4

ˇ̌
ˇ̌ B

mf

Bξmf
pfQpξq

ˇ̌
ˇ̌
2 ˇ̌
ˇ̌ B

mγ

Bξmγ
Γj,`pξq

ˇ̌
ˇ̌
2

dξ

ď Cmγ2´mγ1 j2´|mγ |jp1` |`2|q
mγ1 24j

ż

Iφ1

2´2jmf1 2´12jdφ1

“ Cmγ2´mγ1 j2´|mγ |jp1` |`2|q
mγ1 2´2jmf1 2´9j .

In the intersection case, if | sinφ1| ď 21´j , we have

|`2|ÿ

`1“´|`2|

ż

pR4

ˇ̌
ˇ̌ B

mf

Bξmf
pfQpξq

ˇ̌
ˇ̌
2 ˇ̌
ˇ̌ B

mγ

Bξmγ
Γj,`pξq

ˇ̌
ˇ̌
2

dξ

ď Cmγ2´mγ1 j2´|mγ |jp1` |`2|q
mγ1 24j

ż

Iφ1

2´2jm12´7jdφ1

“ Cmγ2´mγ1 j2´|mγ |jp1` |`2|q
mγ1 2´2jmf1 2´4j .

On the other hand, if | sinφ1| ě 21´j (in which case 2j | sinφ1| is equivalent to
|`2|), then we have

|`2|ÿ

`1“´|`2|

ż

pR4

ˇ̌
ˇ̌ B

mf

Bξmf
pfQpξq

ˇ̌
ˇ̌
2 ˇ̌
ˇ̌ B

mγ

Bξmγ
Γj,`pξq

ˇ̌
ˇ̌
2

dξ

ď Cmγ2´mγ1 j2´|mγ |jp1` |`2|q
mγ1 24j

ż

Iφ1

2´2jm12´12j | sinφ1|´5dφ1

ď Cmγ2´mγ1 j2´|mγ |jp1` |`2|q
mγ1 2´2jmf1 2´4j |`2|

´5.

This proves the theorem.725
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To prove Theorem 3.3 we modify an idea from [22] to take into account the
fourth variable. For that, we introduce the following differential operator:

L “
´
I ´ p 22j

2πp1`|`2|q
q2 B

2

Bξ21

¯́
I ´ p 2

j

2π q
2 B2

Bξ22

¯́
I ´ p 2

j

2π q
2 B2

Bξ23

¯́
I ´ p 2

2j

2π q
2 B2

Bξ24

¯

(B.3)
Using Theorem B.3, a direct computation gives the following result.

Theorem B.4. Let f “ hQ g, where hQ is a surface fragment given by (B.1),
and Γj,` be given by (B.2). Then, for j ě 0 and |`2| ď 2j, we have

|`2|ÿ

`1“´|`2|

ż

pR4

ˇ̌
ˇL

´
pfpξqΓj,`pξq

¯ˇ̌
ˇ
2

dξ ď C2´4jp1` |`2|q
´5.

As observed above, Theorem B.4 gives an estimate valid for f in the region
P1. A very similar estimate can be derived for the regions P2 and P3, using
appropriate modifications of the differential operator L.

B.2. Proof of Theorem 3.3730

Fix j ě 0. By our remark above, it is enough to consider the region P1 only.
For µ PMj , the shearlet coefficients of fQ associated to P1 can be written as

xfQ, ψ̃µy “ xfQ, ψ
p1q
j,k,`y “ |detAp1q|

´j{2

ż

pR4

xfQpξqΓj,`pξqe2πiξA
´j
p1q
B
´r`s

p1q
kdξ

where Γj,` is given by (B.2). Using the equivalent definition of the weak `1

norm, we need to show

#tµ PMj : |xfQ, ψ̃µy| ą εu ď C2´2jε´1. (B.4)

We observe that ξA´j
p1qB

´r`s
p1q k “ pk1´ k2`1´ k3`2q2

´2jξ1` k22´jξ2` k32´jξ3`

k42´2jξ4. Hence, letting L to be the differential operator in (B.3), we have that

L
´
e2πiξA

´j
p1q
B
´r`s

p1q
k
¯
“

$
&
%
G0pk, `q e

2πiξA´j
p1q
B
´r`s

p1q
k if `2 “ 0

G1pk, `q e
2πiξA´j

p1q
B
´r`s

p1q
k if `2 ‰ 0

where

G0pk, `q “ G0pkq “ p1` k
2
1qp1` k

2
2qp1` k3q

2p1` k4q
2

G1pk, `q “ p1` p |`2|
1`|`2|

q2p k1
|`2|
´ k2`1

|`2|
˘ k3q

2q p1` k22qp1` k3q
2p1` k4q

2.

The ˘ sign in the above expression follows from dividing `2 by |`2|; in other
words ˘k3 “ signp`2qk3.735

Hence, a direct computation (using integration by parts) shows that

xfQ, ψ̃µy “ | detpAp1q|
´
j
2

ż

pR4

L
´
xfQpξqΓj,`pξq

¯
Gip`, kq

´1e2πiξA
´j
p1q
B
´r`s

p1q
k dξ,

(B.5)
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where Gi “ G0 if `2 “ 0 and Gi “ G1 if `2 ‰ 0.
We next consider the cases `2 “ 0 and `2 ‰ 0 separately.
For `2 ‰ 0, (B.5) gives

G1pk, `qxfQ, ψ̃µy “ | detpAp1q|
´j{2

ż

pR4

L
´
xfQpξqΓj,`pξq

¯
e2πiξA

´j
p1q
B
´r`s

p1q
kdξ.

Let K “ pK1,K2,K3,K4q P Z4 and define

RK “ tk “ pk1, k2, k3, k4q P Z4 :
k1
|`2|

P rK1,K1 ` 1s, ´
k2`1
|`2|

P rK2,K2 ` 1s,

k3 “ K3, k4 “ K4u.

For fixed j, `, the set t| detAp1q|
´j{2e2πiξA

´j
p1q
B
´r`s

p1q
k : k P Z4u is an orthonor-

mal basis for L2 functions defined on r´1{2, 1{2s4B
r`s
p1qA

j
p1q (which contains the740

support of Γj,`). It follows that

ÿ

kPRK

G1pk, `q
2|xfQ, ψ̃y|

2

“
ÿ

kPRK

|detpAp1qq|
´j

ˇ̌
ˇ̌
ż

pR4

L
´
xfQpξqΓj,`pξq

¯
e2πiξA

´j
p1q
B
´r`s

p1q
kdξ

ˇ̌
ˇ̌
2

ď }LpxfQΓj,`q}
2

“

ż

pR4

ˇ̌
ˇL

´
xfQpξqΓj,`pξq

¯ˇ̌
ˇ
2

dξ.

Therefore,

|`2|ÿ

`1“´|`2|

ÿ

kPRK

|xfQ, ψ̃y|
2

“

|`2|ÿ

`1“´|`2|

ÿ

kPRK

G1pk, `q
´2|detpAp1q|

´j

ˇ̌
ˇ̌
ż

pR4

L
´
xfQpξqΓj,`pξq

¯
e2πiξA

´j
p1q
B
´r`s

p1q
kdξ

ˇ̌
ˇ̌
2

ď C
`
1` pK1 `K2 ˘K3q

2
˘´2

p1`K2
2 q
´2p1`K2

3 q
´2p1`K2

4 q
´2

ˆ

|`2|ÿ

`1“´|`2|

ż

pR4

ˇ̌
ˇL

´
xfQpξqΓj,`pξq

¯ˇ̌
ˇ
2

dξ.

Using Theorem B.4, we have

|`2|ÿ

`1“´|`2|

ÿ

kPRK

|xfQ, ψ̃y|
2 ď H´2

K C2´4jp1` |`2|q
´5,

where we define HK “
`
1` pK1 `K2 ˘K3q

2
˘
p1`K2

2 qp1`K
2
3 qp1`K

2
4 q.
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For fixed j and `, we let RK,ε “ tk P RK : |xf, ψ
p1q
j,k,`y| ą εu and Nj,`,Kpεq “745

#RK,ε. Then, by the condition |`1| ď |`2|, we have that Nj,k,`pεq ď Cp1 `

|`2|q
2 and, thus,

ř|`2|
`1“´|`2|

Nj,k,`pεq ď p1 ` |`2|q
3. Now, for k P RK such that

|xfQ, ψ
p1q
j,k,`y| ą ε, we have

ε2Nj,`,Kpεq ď
ÿ

kPRK,ε

|xfQ, ψ̃y|
2 ď

ÿ

kPRK

ď |xfQ, ψ̃y|
2,

which implies

|`2|ÿ

`1“´|`2|

Nj,`,Kpεq ď C H´2
K 2´4jp1` |`2|q

´5ε´2.

Hence750

|`2|ÿ

`1“´|`2|

Nj,`,Kpεq ď C min
`
p1` |`2|q

3, H´2
K 2´4jp1` |`2|q

´5ε´2
˘
.

Now, let `˚2 be defined by p`˚2 ` 1q3 “ H´2
K 2´4jε´2p1 ` `˚2 q

´5, so p1 ` `˚2 q
4 “

H´1
K 2´2jε´1. Then,

2jÿ

`2“´2j

|`2|ÿ

`1“´|`2|

Nj,`,Kpεq

ď
ÿ

|`2|ďp`
˚
2 `1q

|`2|ÿ

`1“´|`2|

Nj,`,Kpεq `
ÿ

|`2|ąp`
˚
2 `1q

|`2|ÿ

`1“´|`2|

Nj,`,Kpεq

ď C
ÿ

|`2|ďp`
˚
2 `1q

p|`2| ` 1q3 ` C
ÿ

|`2|ąp`
˚
2 `1q

H´2
K 2´4jε´2p1` |`2|q

´5

ď Cp`˚2 ` 1q4 ` CH´2
K 2´4jε´2p1` `˚2 q

´4

ď CH´1
K 2´2jε´1.

Notice also that
ř
KPZ4 H

´1
K ă 8. Thus

#tµ PMj : |xfQ, ψ̃µy| ą εu ď
ÿ

KPZ4

2jÿ

`2“´2j

|`2|ÿ

`1“´|`2|

Nj,`,Kpεq

ď C2´2jε´1
ÿ

KPZ4

H´1
K ď C2´2jε´1

which gives (B.4).
Next we consider the case `2 “ 0. In this case, (B.5) gives

G0pkqxfQ, ψ̃µy “ |detpAp1q|
´j{2

ż

pR4

L
´
xfQpξqΓj,`pξq

¯
e2πiξA

´j
p1q
B
´r`s

p1q
kdξ.

37



Using Theorem B.4, we have that755

ÿ

kPZ4

G0pkq
2 |xfQ, ψ

p1q
j,`,ky|

2 “

ż

pR4

ˇ̌
ˇL

´
xfQpξqΓj,`pξq

¯ˇ̌
ˇ
2

dξ ď C 2´4j .

In particular, for each k P Z4 we have |xfQ, ψ
p1q
j,`,ky| ď C G0pkq

´12´2j . Sinceř
kPZ4 G0pkq

´1 ă 8, there is a constant C such that

}xfQ, ψ
p1q
j,`,ky}1 “

ÿ

kPZ4

|xfQ, ψ
p1q
j,`,ky| ď C 2´2j

which implies }xfQ, ψ
p1q
j,`,ky}w`1 ď C 2´2j . This concludes the proof of the theo-

rem when j ď j0.

B.3. Analysis of the coarse scale.760

At the beginning Section B, we assumed j ą j0 for some j0 ą 0. Here we
consider the coarse scale case j ď j0.

We recall that fQpxq “ hQpx1, x2, x3q gpx4q where

hQpx1, x2, x3q “ wp2jxqhpx1, x2, x3qXtx1ąEpx2,x3qupx1, x2, x3q

with w P C8pr´1, 1s3q, h P C2pr0, 1s3q, g P C2pr0, 1sq. Therefore, observing
that supphQ P r´2´j , 2´js3 and g is also compactly supported, we have

}fQ}
2
2 ď

ż

supp phQqˆsupp pgq

|fQpxq|
2dx ď C 2´3j .

The last inequality implies that }xfQ, ψ̃µy}`2 ď }fQ}2 ď C 2´3j{2. We also notice
that

}xfQ, ψ̃µy}`p ď N1{p´1{2}xfQ, ψ̃µy}`2

is valid for any sequence txfQ, ψ̃µyu of N elements. Since, at scale 2´j , there
are about 22j shearlet elements in Q0

j , so we conclude that there is a constant
C independent of Q and j such that

}xfQ, ψ̃µy}`1 ď C 22jp1´1{2q2´3{2j “ C 2´j{2.

This completes the proof of Theorem 3.3 for j ą j0.

B.4. Proof of Theorem 3.4.

We again write hQpx1, x2, x3q “ hpx1, x2, x3qwQpx1, x2, x3q where we now765

assume Q P Q1
j . With this notation, we write the localized function fQ as

fQpx1, x2, x3, x4q “ hQpx1, x2, x3qgpx4q. The following two lemmata can be
proved using an argument very similar to Lemma 4.8 and Lemma 4.9 in [22].

Lemma B.5. Let fQ “ fwQ where f “ hXBg P EpAq is given by (10), Q P Q1
j

and Uj,` be given by (5). Then,770

ż

Uj,`

| pfQpξq|2dξ ď C2´11j .
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Lemma B.6. Let m “ pm1,m2,m3,m4q P N4, ξ “ pξ1, ξ2, ξ3, ξ4q P R4 and Γj,`
given by (B.2) where ` “ p`1, `2q. Then,

2jÿ

`1“2j

2jÿ

`2“´2j

ˇ̌
ˇ̌ B

m

Bξm
Γj`pξq

ˇ̌
ˇ̌
2

ď Cm2´|m|j ,

where Cm is independent of j and ξ, and |m| “ m1 `m2 `m3 `m4.

By Lemmata B.5 and B.6, using an argument similar to the proof of Lemma
4.10 in [22], we have the following result.

Lemma B.7. Let fQ “ fwQ where f P E2pAq and Q P Q1
j and set

T “

ˆ
I ´

22j

p2πq2
∆

˙
(B.6)

where ∆ “ B
2

Bξ21
` B

2

Bξ22
` B

2

Bξ23
` B

2

Bξ24
. Then,775

ż

pR4

2jÿ

`1“2j

2jÿ

`2“´2j

ˇ̌
ˇT 2

´
pfQΓj,`

¯
pξq

ˇ̌
ˇ
2

dξ ď C2´11j .

Now we prove Theorem 3.4.
Proof of Theorem 3.4.
As observed above, it will be sufficient to consider the system of interior

shearlets in the pyramidal region P1 as the other pyramidal regions and the
boundary shearlets can be handled in a similar way.780

For T given by (B.6), denoting E1pξq “ e2πiξA
´j
p1q
B
´r`s

p1q
k, we have

T pE1pξqq “
`
1` 2´2jpk1 ´ `1k2 ´ `2k3q

2 ` k22 ` k
2
3 ` 2´2jk24

˘
E1pξq

T 2 pE1pξqq “
`
1` 2´2jpk1 ´ `1k2 ´ `2k3q

2 ` k22 ` k
2
3 ` 2´2jk24

˘2
E1pξq.

For a fixed j ě 0 and fQ “ fwQ where f “ hg and Q P Q1
j , using integration

by parts we have

xfQ, ψ̃µy “ |detAp1q|
´j{2

ż

pR4

pfQpξqΓj,`pξqe2πiξA
´j
p1q
B
´r`s

p1q
kdξ

“ | detAp1q|
´j{2p1` 2´2jpk1 ´ `1k2 ´ `2k3q

2 ` k22 ` k
2
3 ` 2´2jk24q

´2

ˆ

ż

pR4

T 2
´
pfQpξqΓj,`pξq

¯
e2πiξA

´j
p1q
B
´r`s

p1q
kdξ.

Now, for K “ pK1,K2,K3,K4q P Z4 we set

RK “ tpk1, k2, k3, k4q P Z4 : k3 “ K3, k2 “ K2,

2´jk4 P rK4,K4 ` 1s, 2´jpk1 ´K2`1 ´K3`2q P rK1,K1 ` 1su.
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We observe that 2jK1 ď k1 ´ K2`1 ´ K3`2 ď 2jpK1 ` 1q and 2jK4 ď k4 ď785

2jpK4 ` 1q, so for each K and ` there are only 1 ` 2j choices for k1 and k4 in
RK . Thus, the number of elements of RK is bounded by p2j ` 1q2. We next use
an argument similar to the proof of Theorem 3.3 above. We observe that, for

fixed j and ` the set t| detAp1q|
´j{2e2πiξA

´j
p1q
B
´r`s

p1q
k : k P Z4u is an orthonormal

basis for the L2 functions supported on r´1{2, 1{2sB
r`s
p1qA

j
p1q. Furthermore, we790

note that Γj,` is supported on r´1{2, 1{2sB
r`s
p1qA

j
p1q. Thus

ÿ

kPRK

|xfQ, ψ̃µy|
2 “ 2´6j

ÿ

kPRK

`
1` 2´2jpk1 ´ `1k2 ´ `2k3q

2 ` k22 ` k
2
3 ` 2´2jk24

˘´2

ˆ

ˇ̌
ˇ̌
ż

pR4

T 2
´
pfQpξqΓj,`pξq

¯
e2πiξA

´j
p1q
B
´r`s

p1q
kdξ

ˇ̌
ˇ̌
2

ď 2´6jp1`K2
1 `K

2
2 `K

2
3 `K

2
4 q
´4

ż

pR4

ˇ̌
ˇT 2

´
pfQpξqΓj,`pξq

¯ˇ̌
ˇ
2

dξ.

From the last inequality, using lemma B.7 we see that

2jÿ

`1,`2“´2j

ÿ

kPRK

|xfQ, ψ̃µy|
2 ď Cp1`K2

1 `K
2
2 `K

2
3 `K

2
4 q
´4

ˆ

ż

pR4

2jÿ

`1,`2“´2j

ˇ̌
ˇT 2

´
pfQpξqΓj,`pξq

¯ˇ̌
ˇ
2

dξ

ď Cp1`K2
1 `K

2
2 `K

2
3 `K

2
4 q
´42´11j . (B.7)

By the Hölder inequality, we have that for any N P N

Nÿ

m“1

|am| ď

˜
Nÿ

m“1

|am|
2

¸1{2

N1{2.

Thus, using the last inequality with (B.7) and the observation that the number
of elements of RK is bounded by p1` 2jq2, we have795

2jÿ

`1,`2“´2j

ÿ

kPRK

|xfQ, ψ̃µy| ď
`
24j

˘1{2
¨
˝

2jÿ

`1,`2“´2j

ÿ

kPRK

|xfQ, ψ̃µy|
2

˛
‚
1{2

ď 22jCp1`K2
1 `K

2
2 `K

2
3 `K

2
4 q
´22´11j{2.

This shows that, for fQ “ fwQ with Q P Q1
j we have

ř
µPMj

|xfQ, ψ̃µy| ď

C2´7j{2. This completes the proof of theorem.
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