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Abstract Human induced pluripotent stem cells (hiPSCs)
have been employed very successfully to identify molecu-
lar and cellular features of psychiatric disorders that would
be impossible to discover in traditional postmortem stud-
ies. Despite the wealth of new available information though,
there is still a critical need to establish quantifiable and ac-
cessible molecular markers that can be used to reveal the bi-
ological causality of the disease. In this paper, we introduce
a new quantitative framework based on supervised learn-
ing to investigate structural alterations in the neuronal cy-
toskeleton of hiPSCs of schizophrenia (SCZ) patients. We
show that, by using Support Vector Machines or selected
Artificial Neural Networks trained on image-based features

N. Fularczyk
Department of Mathematics
University of Houston
E-mail: nfularcz@Central.UH.EDU

J. Di Re
Department of Pharmacology & Toxicology
University of Texas Medical Branch
E-mail: jdire@utmb.edu

L. Stertz
Department of Psychiatry and Behavioral Sciences
UT Health
E-mail: Laura.Stertz@uth.tmc.edu

C. Walss-Bass
Department of Psychiatry and Behavioral Sciences
UT Health
E-mail: Consuelo.WalssBass@uth.tmc.edu

F. Laezza
Department of Pharmacology & Toxicology
University of Texas Medical Branch
E-mail: felaezza@utmb.edu

D. Labate
Department of Mathematics
University of Houston
E-mail: dlabate@math.uh.edu

associated with somas of hiPSCs derived neurons, we can
predict very reliably SCZ and healthy control cells. In addi-
tion, our method reveals that β III tubulin and FGF12, two
critical components of the cytoskeleton, are differentially
regulated in SCZ and healthy control cells, upon perturba-
tion by GSK3 inhibition.

Keywords Convolutional neural networks · fluorescence
microscopy · PI3k/GSK3 pathway · human induced
pluripotent stem cells · image processing · schizophrenia ·
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1 Introduction

Human induced pluripotent stem cells (hiPSCs) have emerged
as a very useful tool for studying a variety of human dis-
eases allowing for the creation of accessible patient-derived
cellular models. In the context of psychiatric disorders –
that are notoriously heterogenous and complex – patient-
derived hiPSCs have been used to establish molecular and
cellular features of the disease that would have been oth-
erwise impossible to reveal in traditional postmortem tis-
sue samples [7, 11, 22]. As a result, by employing real time
experimental perturbations in patient-derived live cells, re-
searchers can identify disease-related cellular responses or
functional cellular endophenotypes, hence expanding the di-
agnostic and therapeutic framework for psychiatric disor-
ders.

Among psychiatric disorders, schizophrenia (SCZ) stands
out for its complexity. Especially in this context, starting
with the first seminal evaluation of cellular and molecular
phenotypes of neural cells from SCZ patient-derived hiPSCs
in [7], hiPSCs studies have been remarkably successful in
unraveling cellular and molecular phenotypes that might be
involved in the biological causality of SCZ [2]. For instance,
reduced neurite outgrowth, decreased number of neurites,
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reduced neural connectivity, synaptic disregulation and ki-
nase signal abnormalities were found in hiPSC-derived neu-
rons of SCZ patients [5, 33, 35] - observations that are con-
sistent with animal models or postmortem studies. In addi-
tion, advanced DNA/RNA sequencing technologies at both
population and single-cell levels in combination with patient
derived hiPSCs have enabled the identification of molec-
ular phenotypes relevant to the pathogenesis of SCZ [6].
Within this line of investigation, a recent study by some
of the authors employed differential genomic profiling of
hiPSC-derived neurons in healthy control vs. SCZ patients
searching for gene expression alterations that could lead to
mechanistic hypotheses of the disease [26]. This work re-
vealed alterations in the phosphoinositide 3-kinase (PI3K)
and glycogen synthase kinase 3 (GSK3) signaling pathways
as a disease-related feature. Specifically, confocal imaging
revealed that the expression levels of fibroblast growth fac-
tor 12 (FGF12), a protein associated with axonal transport,
and the neuronal cytoskeleton component β III Tubulin were
differentially regulated in neurites of hiPSC-derived neurons
of healthy control and SCZ upon perturbation by inhibitors
of kinases in the PI3K/GSK3 pathway.

Although patient-derived hiPSCs studies have associated
SCZ to a multitude of genetic factors and intertwined en-
dophenotypes, the molecular and cellular mechanisms un-
derlying the disease are still poorly understood and there is
an unmet need to identify markers based on measurable and
easily accessible quantities, that could be used as biomark-
ers of the disease. Specifically, while results in the litera-
ture suggest that dysregulation of the kinase pathway may
functionally affect the neuronal cytoskeleton in SCZ, there
is currently no quantitative or predictive analysis of the re-
lationship connecting measurable cytoskeleton alterations,
kinase signal abnormalities and SCZ.

To address this outstanding need, in this paper we carry
out a quantitative investigation of structural alterations in
the neuronal cytoskeleton of patient-derived hiPSCs with the
aim to identify accessible image-base molecular biomarkers
that can be used to reliably predict SCZ in hiPSCs images.
To do so, we have introduced a computational algorithm for
the extraction of image-based features associated with the
cytoskeleton of the somas of hiPSC-derived neurons that we
have combined with a targeted supervised learning classifier.
To provide both high accuracy and interpretability of dis-
ease prediction, we have developed two distinct methods: (i)
our first method uses support vector machines (SVMs) that
we trained on a targeted set of handcrafted features; (ii) our
second method applies artificial neural networks, namely a
convolutional neural network (CNN) or a vision transformer
(ViT) and is fully data-based. The outcome of our supervised
learning methods shows that structural alterations measured
from soma images of hiPSC-derived neurons at the single
cell level constitute a reliable predictor of disease status,

with such alterations being correlated to disruption of the
GSK3 signaling pathway. To our knowledge, this is the first
result of this type in the context of HiPCSs studies of SCZ.
By identifying image-based biomarkers of SCZ in hiPSC-
derived neurons using a supervised classifier at single cell
level, our approach offers a powerful avenue for elucidating
cellular mechanisms that contribute to SCZ onset and pro-
gression.

2 Materials and Method

2.1 Materials

Cell preparation. Human iPSCs processed and analyzed in
the present study derive from a previously published dataset
[26]. Briefly, de-identified cell lines included in this study
were generated from a Central Valley of Costa Rica SCZ
multiplex family and included 6 individuals, namely 3 fe-
males and 3 males, of which 3 male siblings are affected
with SCZ and all females are unaffected and served as healthy
controls. Due to the disease history in the family, cell lines
could not be matched for sex, which is an intrinsic limi-
tation of the original and the present studies. All subjects
were carefully characterized in previous studies, according
with the Principles of the Declaration of Helsinki, and lym-
phoblastoid cell lines were already generated from each sub-
ject, as previously described in [26].

Immunocytochemistry. We describe below cell prepa-
ration recalling what was presented in a previous work [26].
After 24 hour treatment with 20 µm CHIR99021 (Tocris), a
potent and selective GSK3 inhibitor or 0.5% DMSO (Vehi-
cle) coverslips were fixed with 4% PFA/4% sucrose for 15
minutes, permeabilized using 0.25% Triton X-100 in PBS
and blocked with 10% BSA for 30 minutes. Cells were stained
using primary antibodies ms IgG1 FGF12 (NeuroMabs, cat-
alog # 75-135, 1:200), ms IgG2a Nav1.2 (Neuromabs, cat-
alog # 75-204, 1:500), Ck MAP2 (Invitrogen catalog #pa1-
10005, 1:2000), and Rb β III Tubulin (Abcam, catalog #ab18207;
1:2000) overnight at 4◦C in 3% BSA. Isotype specific sec-
ondary antibodies ms IgG1 Alexa 647 (Life Technologies,
1:200), ms IgG2a Alexa 568 (Life Technologies, 1:200), rb
Alexa 488 (Life Technologies, 1:200) Ck Dylight 405 (Jack-
son ImmunoResearch Laboratories, catalog # 103-475-155,
1:200) in 3% BSA were applied for 2 hours. Cells were
washed and mounted using ProLong Gold Antifade Moun-
tant (ThermoFisher, catalog # P36930).

Image acquisition. Confocal images were acquired with
a Zeiss LSM-880 with Airy scan confocal microscope and
a 63X oil immersion objective (1.4 NA). Multi-track acqui-
sition was done with excitation lines at 405nm for Jackson
Dylight 405 (MAP2 Channel), 488nm for Alexa 488 (β III
tubulin channel), 561nm for Alexa 568 (Nav1.2 channel)
and 633nm for Alexa 647 (FGF12 channel). Z-stacks were
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acquired every 0.43 µm with a frame size of 1024× 1024
pixels and a scan speed of 7. The pinhole was set to 1AU for
for the longest wavelength used in the acquisition (633nm)
and the step size of the z-stack was kept at the optimal set-
ting in the Zeiss software. Acquisition parameters, including
photomultiplier gain and offset, were kept constant for each
protein of interest.

Images used in this paper were projected using sum pro-
jections. For the later processing stage, region of interests
delineating the boundaries of the somas were manually drawn
on an overlay of the β III tubulin and MAP2 image channels.
A representative example showing the delineation of a soma
boundary is reported in Fig. 1.

Dataset. Our dataset consists of 89 fluorescent image
stacks, including a total of 340 cells, specifically, 65 HC-
DMSO cells, 110 HC-CHIR cells, 67 SCZ-DMSO cells, and
98 SCZ-CHIR.

2.2 Method

We designed a supervised learning approach aimed at pre-
dicting the presence of disease (at the single cell level) in
multi-channel fluorescent images of hiPSCs derived neu-
rons and to quantify the impact of GSK3 inhibition on dis-
ease prediction and manifestation. To carry out such task,
we considered two strategies:

1. a method using SVMs trained with a specially selected
class of handcrafted features;

2. a fully data-driven approach implemented using a CNN
or a ViT.

Before describing in detail our implementation of these
two types of strategies, we briefly summarize general advan-
tages and disadvantages of a SVM as compare to a CNN or
ViT approach.

We recall that a SVM is a non-probabilistic algorithm
that computes the optimal linear classifier [31]. Common to
other machine learning algorithms, non-linear decisions can
be implemented through an SVM using appropriate kernel
functions (also called filters) as an embedding into a higher
dimensional space (the feature space). A main advantage
of SVM classifiers is that they can be trained with rela-
tively few training samples, especially if feature selection
(through appropriate kernel functions) is guided by domain-
knowledge criteria to facilitate class discrimination.

Artificial neural networks such as CNNs [21] or ViTs
[32] on the other hand are completely data-driven, that is,
features are learned during training. These methods have
gained increasingly more recognition in bioimaging applica-
tions in recent years, due to their remarkable performance in
various classification tasks. As their multilayered architec-
tures that may include a very large number of learnable pa-
rameters allow them significantly more flexibility than SVMs,

they can learn more sophisticated classification models [20].
However, to learn satisfactory classification models, artifi-
cial neural networks typically need a very large number of
annotated data for training - a requirement that may be un-
feasible in some applications due to physical constraints or
privacy issues. Another limitation of such methods concerns
the interpretation of results. Since the classification model
is entirely data-driven, it is usually very difficult to ascertain
what data properties are responsible for class discrimination.

We refer to the excellent review by Lin et al. [16] for
a more thorough comparison of handcrafted vs data-based
features in biomedical imaging problems.

2.3 SVM approach

We developed an approach based on SVM to test the hy-
pothesis that structural characteristics of the soma are al-
tered in images of hiPSC-derived neurons of patients af-
fected by SCZ. In addition, previous work published us-
ing these cells [26] showed that inhibition of GSK3 using
CHIR99021 increased the fluorescent intensity of β III tubu-
lin in the neurons of HC cells.

As remarked above, feature selection is critical for the
success of such method, hence we defined appropriate ker-
nel functions with the aim to capture the most relevant image
characteristics of the soma region.

As shown in Fig. 1, the soma region of a representa-
tive image of hiPSC-derived neurons exhibits very differ-
ent visual characteristics in the MAP2, β III tubulin, Nav1.2
and FGF12 image channels. In the MAP2 (Fig. 1F) and
β III tubulin channel (Fig. 1G), the soma exhibits a pattern
with recognizable filament-like structures. By contrast, in
the FGF12 channel (Fig. 1I) the most remarkable charac-
teristics is the presence of highly localized spots of high flu-
orescent intensity. The Nav1.2 channel (Fig. 1H) shows a
combination of filament-like and spot-like characteristics.

Thus, to capture the micro-structures that are especially
visible in the β III tubulin and MAP2 image channels, we
adopted a family of kernel functions associated to a class
of statistical matrices called Gray-Level Dependence Ma-
trices whose properties are described in the next section.
Due to their sensitivity to complex patterns that may include
in-homogeneous characteristics, we found that these kernel
functions are very effective at capturing the image character-
istics qualitatively observed in the different image channels
and at discriminating SCZ from control cells.

2.3.1 Feature Selection.

To compute image-based features for our SVM approach we
have chosen a class of statistical matrices derived from the
pixel values in the soma region of the fluorescent images of
hiPSC-derived neurons.
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Fig. 1: Visual characteristics of a representative soma region (delineated in yellow) shown in the (A) MAP2, (B) β III tubulin,
(C) Nav1.2 and (D) FGF12 channels, with corresponding zoomed-in details (panels F-I) illustrating the distinct structural
features of each image channel. Image overlay is shown in panel E.

Statistical matrices derived from gray-level pixel values
have been used successfully in several image applications
starting with the seminal work on Haralick on the Gray-
Level Co-occurrence (GLC) Matrix and its applications in
satellite image classification [12]. Among the most notable
contributions to this area of research, we recall the work on
the Gray-Level Dependence (GLD) Matrix, introduced for
problems of texture classification [27], and the Gray-Level
Size Zone (GLSZ) Matrix, proposed for applications in cell
classification [28]. All these matrix-based features are part
of the current Image Bio-marker Standardisation Initiative
which aims to improve reproducibility and validation of ra-
diomic features for applications in medical imaging [36].
The numerical implementation of such matrices is publicly
available in the py-Radiomics toolbox [30].

Here is the definition of a 2D Gray-Level Dependence
Matrix (GLDM) from [30] which we adapt to our setting.

Definition 1 Let M denote a grayscale image and fix a pixel
location p1 in M with grayscale intensity i. We say that a
pixel p2 in M with the same grayscale intensity as p1 is δ -
dependent on the pixel p1 if p2 is in a δ -neighborhood cen-
tered at p1. The (i, j) entry of a GLD matrix P is defined
as the number of times a pixel of grayscale level i with j
δ -dependent pixels appears in the image.

We illustrate this definition using a 3× 3 matrix, with
δ = 1 (this is the default value of the parameter which we
adopt throughout this study):

M =

1 3 3
1 3 1
3 1 2

 , GLD(M;δ = 1) =

0 2 2 0
1 0 0 0
0 1 2 1


The rows of the GLD matrix are associated with pixel val-
ues 1, 2 and 3 and the columns count the number of δ -
dependencies. For instance, the (3,3) entry in the GLD ma-
trix indicates that there are 2 pixels of grayscale level 3

which have 3 1-dependencies (specifically, the entries (1,2)
and (1,3) in matrix M).

We computed the GLD matrices for all soma regions in
our imaging set, where each individual image is a rectangu-
lar patch containing the soma and all pixel values outside
the soma are set to 0. Since somas have different diame-
ters, the corresponding rectangular patches containing the
somas may differ in size and, similarly, the corresponding
GLD Matrices may differ in size. Nonetheless, each GLD
matrix is mapped to a feature vector of dimension 14, where
each component is an appropriate weighted sum of matrix
entries designed to capture local image patterns.

For example, let P be the GLD matrix for an input im-
age M, Ng be the number of discrete intensity values in M,
Nd be the number of discrete dependency sizes and Nz =

∑
Ng
i=1 ∑

Nd
j=1 P(i, j), be the number of dependency zones. Then

the Small Dependence Emphasis (SDE), defined as

SDE =
∑

Ng
i=1 ∑

Nd
j=1

P(i, j)
i2

Nz

measures the homogeneity of local image patterns with smaller
SDE values indicating a more homogeneous local structure.

Similarly, the other components of the feature vector
quantify other statistical characteristics associated with local
image patterns; we refer to [30] (and the related website [9])
for their definitions.

Using this approach, we mapped each soma image into a
vector containing the fourteen radiomics features which we
then used as input (as a csv file) for our supervised learning
classifier, namely a Support Vector Machine (SVM).

2.3.2 SVM data classification

We applied our SVM classifier, trained on the image-based
feature vectors computed above. to assign each cell (in the
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test set) to one of four cell classes resulting from disease
diagnosis and cell treatment – namely, disease (SCZ) vs.
healthy control (HC) and GSK3 inhibition (GSK3i) vs. treat-
ment control (vehicle). As remarked above, our features are
selected to capture local image patterns including texture-
like features such those we qualitatively observed in the β III
tubulin and MAP2 image channels.

In addition to using image features computed from a sin-
gle fluorescent image channel, we also considered concate-
nated feature vectors obtained by combining different fluo-
rescent image channels. Our rationale is that a perturbation
(e.g., GSK3i) may affect different soma compartments re-
sulting in structural alterations that may induce image phe-
notypes in different fluorescent image channels. Hence, by
concatenating images features derived from multiple fluo-
rescent image channels we combine information associated
with different soma subcompartments that can possibly im-
prove the performance of the classifier.

In our experiments below, we will report the classifica-
tion performance obtained from a single fluorescent image
channel as well as the classification performance obtained
by concatenating the feature vectors computed from all 4
fluorescent image channels.

2.4 Artificial neural network approach

Artificial neural networks (ANNs) offer a platform for a su-
pervised classification approach where feature selection is
completely data-driven.

CNNs are among the most widely used ANNs in image
classification tasks, following their celebrated success in the
ImageNet classification challenge [13]. A CNN consists of
a sequence of convolutional and pooling layers, followed by
a fully connected layer [14, 21]. In a CNN, the first section
(consisting typically of multiple layers) performs feature se-
lection starting from the input pixels while the last section
performs a classification on top of the extracted features.

ViTs were introduced to improve vision processing tasks
such as image recognition [32] and it was shown that they
can achieve greater performance than CNNs on image clas-
sification [10]. Their key idea consists in breaking down in-
put images into patches and then analyze their relationships.
This is in contrast with a CNN where input pixels are sim-
ply mapped into feature vectors. A ViT is implemented us-
ing a more complex network architecture than a CNN and
requires typically a larger amount of training samples.

2.4.1 Selection of network architectures

For our CNN, we implemented a standard 3-layer architec-
ture as illustrated in Fig. 2. It consists of three convolutional
units where each unit includes a layer of 3×3 convolutional

filters, Group Normalization, dropout with probability one-
half and a Rectified Linear Unit (ReLU). We set the number
of convolutional filters in each layer to increase by a multiple
of 2, starting with 16 filters in the first layer, followed by 32
and 64 filters in the second and third layer, respectively. The
output layer is a linear layer that takes as input the output
of the last convolutional unit and applies a linear transfor-
mation to generate a 2-component feature vector whose size
corresponds to the number of classes, e.g., 2 classes if we
carry out a binary classification.

Our network was implemented using PyTorch by adapt-
ing the code used by one of the authors in [24].

Fig. 2: 3-layer Convolutional Neural Networks with 16, 32
and 64 nodes in layer 1, layer 2 and layer 3, respectively.

We adopted the ViT from the TIMM package [34] which
is implemented in PyTorch. The network architecture in-
cludes 12 alternating Transformer encoder’s which can be
thought of as blocks; a layer norm precedes each block while
a residual connection follows each block; each Transformer
encoder contains 6 self-attention heads followed by a multi-
layer perceptron [10]. This implementation takes individual
soma images as input and processes them into patches of
size 16x16 pixels. We set the hyper-parameters to the soft-
ware defaults.

2.4.2 Data preparation and training

We applied our CNN approach to image patches extracted
from the soma regions. Since somas from different cells may
exhibit a variability in size, this approach allows us to clas-
sify somas based solely on their cytoskeleton structures and
not on their shape and size. This way, we can have a fair
comparison with our SVM approach that we trained on fea-
tures extracted from the soma independently of its size.

For the selection of the patch size, we tested several op-
tions and found the best classification performance to occur
for size 16x16 pixels. We explain this heuristic result with
the observation that this patch size is large enough to include
informative structural characteristics as shown in Fig. 1, that
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might otherwise be missed by smaller patches. By allowing
a small overlap between contiguous patches, we can extract
a relatively large number of them from our image database,
so that we can effectively train our CNN.

To automatize patch extraction, we designed an auto-
mated routine that extracts rectangular regions of size 16×
16 pixels from the soma region of each image. This rou-
tine extracts patches sequentially by rows allowing a 8 pixel
slide, i.e., there is a 8 pixel overlap between a patch and the
next one. In addition, we discarded any patch that includes
more than 10% of pixel with 0 intensity. This procedure
removes patches that are either dominated by background
(hence, uninformative) or patches that including a signifi-
cant portion of background (hence, they may contain edges
associated with the mask). Representative patches generated
by this routine are shown in Fig. 3, including examples of
image that are discarded according to our established crite-
ria. The figure shows that we obtain about 30 usable patches
from a typical soma image.

By applying this routine to our images, we obtained the
patch dataset on which we trained and tested our CNN. In
total, this dataset includes: 11390 patches (extracted from
208 soma images) for the classification problem HC vs SCZ
in CHIR; 7065 patches (extracted from 132 soma images)
for the classification problem HC vs SCZ in DMSO; 10735
patches (extracted from 175 soma images) for the classifi-
cation problem DMSO vs CHIR in HC; 7720 patches (ex-
tracted from 165 soma images) for the classification prob-
lem DMSO vs CHIR in SCZ.

We remark that, while our CNN is designed to classify
image patches, our end goal is to classify individual somas.
To classify the soma images, we proceeded by concatenat-
ing the probability vectors of all image patches contained
in any given soma and then computed the component-wise
mean over the resulting probability vector. The argument
max gives the network’s predicted class for the soma image.

To train our CNN, we split our image patches into a
training set and a validation set, by assigning 70% of the
image patches for training and 30% for validation. Addi-
tionally, we augmented our training set by applying to each
image patch rotations of 90, 180, and 270 degrees along with
horizontal and vertical flips.

Our ViT network was similarly trained by assigning 70%
of the images for training and 30% for validation.

During the training we used the Adam optimizer and
one-cycle learning scheduler [25]. We trained our networks
using a PC equipped with Intel Core i5-8250U CPU @ 1.6GHz,
4 Core(s), 8 Logical Processor(s) and 8GB of RAM, and a
NVIDIA GeoForce GTX 1050.

3 Results

We applied our supervised learning framework, trained on
image-based features of hiPSCs-derived neurons, to solve
two classification tasks at the single cell level. The first task
is the discrimination of disease (SCZ) vs. healthy control
(HC); the second task is the discrimination of GSK3 inhibi-
tion (GSK3i) vs. treatment control (Vehicle).

In our tables below, we report the classification results
obtained from our SVM, CNN and ViT methods. To also in-
dicate the stability of the classification results, each accuracy
result in our tables is an average over 10 independent runs
of the same numerical experiments, that is, for the SVM,
we run 10 experiments using different random training/tests
splits; for the CNN and ViT networks, we trained the net-
work using 10 different random initializations. In the tables,
we also report the standard deviation associated with each
accuracy measure.

3.1 Classification using single image channels

Tables 1 and 2 report the classification accuracy results ob-
tained using our SVM, CNN and ViT classifiers trained on
features taken from a single fluorescent image channels. As
discussed in the Materials and Method section, there are
four fluorescent channels: β III tubulin, FGF12, MAP2 and
Nav1.2. We consider a classification accuracy above 0.5 to
be an indication of the predictive ability of the classifier.
For instance, in Table 1, corresponding to the image channel
FGF1.2 and the GSK3i cells, the SVM method is reported
with accuracy 0.743± 0.046. This indicates that the proba-
bility of correctly assigning a given cell treated with GSK3i
to either the class SCZ or HC is on average 74.3% (with
standard deviation 4.6%). On the other hand, on the same
classification problem, the CNN method is reported with ac-
curacy 0.509± 0.045. This indicates that the probability of
correctly assigning a given cell treated with GSK3i to either
the class SCZ or HC using the CNN classifier is on average
50.9% (with standard deviation 4.5%), i.e., essentially the
same as random chance.

Table 1 reports the classification performance of the clas-
sification problem SCZ vs HC applied to either Vehicle cells
or GSK3i-treated cells. For the Vehicle cells (left section
of the table), the ViT method reports the best classification
performance corresponding to the β III tubulin and FGF12
channels, while the SVM method reports the best perfor-
mance for the MAP2 and Nav1.2 channels, even though in
the latter case the performance is not significantly different
than ViT. For the GSK3i cells (right section of the table),
the SVM method reports the best classification performance
for all four image channels. The CNN has the worst per-
formance overall and in many cases (especially with Vehi-
cle cell) the reported accuracy is around 0.5, meaning that
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Fig. 3: Automated patch extraction. A: Soma image in the β III tubulin fluorescent channel. B: Patches of size 16×16 pixels
are extracted sequentially by rows allowing a 8 pixel slide. Patches including less than 10% of 0-intensity pixels are retained
(panels D and F) otherwise they are discarded (panels C and E). The image contains a total of 32 usable patches.

Image Control cells (Vehicle) GSK3i cells
channel SVM CNN ViT SVM CNN ViT
β III tubulin 0.576±0.060 0.530±0.029 0.669±0.084 0.687±0.052 0.605±0.042 0.598±0.039
FGF12 0.614±0.066 0.524±0.039 0.695±0.070 0.743±0.046 0.509±0.045 0.593±0.051
MAP2 0.697±0.068 0.564±0.049 0.634±0.077 0.691±0.047 0.576±0.081 0.586±0.045
Nav1.2 0.702±0.070 0.511±0.025 0.653±0.058 0.651±0.050 0.513±0.028 0.581±0.038

Table 1: Individual soma classification performance SCZ vs HC using features from a single image channel. Bold font
indicates best performance by row (within the same classification experiment)

Image HC cells SCZ cells
channel SVM CNN ViT SVM CNN ViT
β III tubulin 0.638±0.041 0.562±0.098 0.642±0.017 0.677±0.044 0.487±0.097 0.604±0.026
FGF12 0.671±0.037 0.522±0.125 0.627±0.014 0.558±0.049 0.512±0.091 0.603±0.030
MAP2 0.613±0.030 0.527±0.090 0.632±0.014 0.621±0.051 0.572±0.056 0.611±0.033
Nav1.2 0.618±0.017 0.486±0.079 0.624±0.010 0.607±0.040 0.585±0.023 0.633±0.046

Table 2: Individual soma classification performance GSKi vs Vehicle using features from a single image channel.

classification is unreliable. We explain the difference in per-
formance among the 3 classification methods with the ob-
servation that: (i) due to our selection of handcrafted fea-
tures, the SVM approach is overall very effective at cap-
turing microstructural alterations occurring especially in the
GSKi cells; (ii) the CNN approach is not effective at learn-
ing discriminating features using single image channels; (iii)
the ViT is able to learn discriminating features using single
image channels but not as effectively as the SVM for the
GSKi cells.

We also observe that the SVM approach trained with im-
age features from the FGF12 channel on GSK3i cells is the
most effective at discriminating HC vs SCZ, yielding ac-
curacy 74.3%. Remarkably, using features from the same
fluorescent channel, the SVM classification accuracy drops

to 61.4% on vehicle cells. Similarly using features from the
β III tubulin channel, the SVM classification performance
drops from 68.7% on GSK3i cells to 57.6% on Vehicle cells.
By comparison, there is no drop in the SVM classification
performance for the MAP2 and Nav1.2 image channels. This
observation points out to the role of the GSK3 signaling
pathway, suggesting that β III tubulin and FGF12 might be
differently regulated in SCZ cells as compared with HC cells
(cf. additional comments in Discussion and Conclusion.

Table 2 reports the classification performance of the clas-
sification problem GSK3i vs Vehicle applied to either HC
cells or SCZ cells. For the HC cells (left section of the table),
the SVM method in combination with the FGF12 image
channel reports the best classification accuracy at 67.1%; the
SVM classification performance for the other image chan-
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nels is comparable (between 61.3% and 63.8%) and the ViT
classification performance is also comparable (between 62.4%
and 64.2%). For the SCZ cells (right section of the table),
the SVM method in combination with the β III tubulin image
channel reports the best classification accuracy at 67.7%; the
SVM classification performance for the other image chan-
nels is slightly lower (between 55.8% and 62.1%) and is
comparable with the ViT classification performance (between
60.4% and 63.3%). Similar to Table 1, the CNN has the
worst performance overall and in many cases the reported
accuracy is around or close to 0.5, meaning that classifica-
tion is unreliable.

3.2 Classification using concatenated image channels

As discussed in the Materials and Method section, to im-
prove classification accuracy, we trained our classifiers on
concatenated image features derived from all four fluores-
cent image channels. Results reported in Tables 3 show the
outcomes of two classification experiments, Vehicle vs SCZ3i
and HC vs SCZ, obtained using our 3 classification methods.

We first examine the Vehicle vs GSK3i experiment (left
side of the table). The best classification is achieved by the
ViT classifier on the SCZ cells with accuracy 72.1% even
though the the SVM approach, at 69.6%, has a comparable
performance. On the HC cells, the best classification per-
formance is achieved by the SVM classifier at 67.4% with
the ViT classifier yielding a comparable classification per-
formance at 64.0%. In both cases, the CNN classifier has a
slightly worse performance. We remark that, as compared
with the classification results obtained using features from a
single image channel in Table 2, the classification accuracy
is now higher for all classifiers; this is especially true for
the CNN approach that is now able to discriminate Vehicle
vs SCZ3i with accuracy significantly above 50%. This ob-
servation confirms that the concatenation of image features
improves the performance of the classifiers.

We next examine the SCZ vs HC experiment (right side
of the table). The best classification is achieved by the SVM
approach on the Vehicle cells and by the ViT approach on
the GSK3i cells; in both cases the classification accuracy is
80.8%. However, the performance of all 3 classifiers is com-
parable on both Vehicle and GSK3i cells. Similar to our ob-
servation above, we remark that, as compared with the clas-
sification results obtained using features from a single image
channel in Table 1, the classification accuracy is now higher
for all classifiers, with the largest improvement observed for
the CNN approach. The last observation suggests that the
concatenation of image features allows the CNN classifier
to better exploit the complementary information associated
with the different image channels.

4 Information Sharing Statement

The imaging dataset presented in this study was previously
released [26] and is found in the Mendeley Data repository:
http://dx.doi.org/10.17632/jgcsykf8xv.1

Our source codes, as well as our pre-trained filters and
imaging data, are available on GitHub at:
github.com/nfularczyk/SCZ project/tree/main

5 Discussion and Conclusion

We have introduced a new computational framework for the
analysis of fluorescent images of hiPSCs of SCZ patients
that is aimed at predicting the presence of disease or GSK3
inhibition using supervised cell classification methods, namely
SVMs, CNN and ViT. All our classifiers are trained on image-
based features extracted from multichannel fluorescent im-
ages of the soma regions of hiPSC derived neurons. How-
ever, while our SVM employs a class of kernel filters de-
rived from GLD statistical matrices to capture local image
patterns, the CNN and a ViT methods are fully data-based.
ViT, in particular, is designed to consider not only the local
feature of an image (as our CNN does) but also their rela-
tionship within the image.

Overall, our approach demonstrated a superb ability to
extract predictive features from the imaging data. Given a
fluorescent image of the soma region of a hiPSC derived
neuron, our SVM and ViT classifiers (trained on image-based
features extracted from the β III tubulin, FGF12, MAP2 and
Nav1.2 image channels) can predict if the neuron belongs to
a SCZ patient with accuracy 80.8% on vehicle and GSK3i
cells respectively. The ViT classifier predicts the perturba-
tion by GSK3 inhibition with accuracy 72.1% on SCZ cells
and the SVM classifiers achieves 67.4% accuracy on H cells.

Our results using single-channel image features exhibit
lower prediction accuracy but are informative of the sensitiv-
ity of selects molecular soma constituents to disease and per-
turbation. Specifically, given the image of a hiPSC derived
neuron with GSK3 inhibition, our SVM approach, trained
on image-based features extracted from the β III tubulin or
FGF12 image channels, predicts SCZ with accuracy 68.7%
and 74.3%; by contrast, the same method is unable to predict
disease on Vehicle cells. Since our SVM is trained on image
features associated with local image patterns, this result sug-
gests that micro-structures of the soma cytoskeleton associ-
ated with β III tubulin and FGF12 might be differently al-
tered in SCZ vs HC cells upon perturbation by GSK3 inhibi-
tion. This is observation can be seen in the context of the ex-
isting literature about protein kinase inhibitors that differen-
tiate between SCZ and HC samples. For instance, studies in
postmortem tissue from schizophrenia patients have shown
dysregulation of protein kinase B (AKT) [8] and mTOR
[18], which are both upstream components of the GSK3
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Control (Vehicle) vs GSK3i HC vs SCZ
HC SCZ Control (vehicle) GSK3i

CNN 0.618±0.039 CNN 0.622±0.052 CNN 0.797±0.013 CNN 0.793±0.014
ViT 0.640±0.026 ViT 0.721±0.049 ViT 0.773±0.038 ViT 0.808±0.047

SVM 0.674±0.046 SVM 0.696±0.059 SVM 0.808±0.056 SVM 0.803±0.024

Table 3: Individual soma classification performances GSKi vs Vehicle using features from all four image channels (β III
tubulin, FGF12, MAP2 and Nav1.2).

pathway. In [26], differences in the expression of β III tubu-
lin were observed in neurites of SCZ at baseline (DMSO)
and in response to GSK3 inhibition. Changes in β III tubulin
distribution in neurons of SCZ patients were reported more
generally in the literature, although some discrepancy ex-
ists [3]. For instance, β III tubulin was found to be decreased
in postmortem in the cortex in SCZ patients [17, 19]; stud-
ies in olfactory neurons showed a change in the pattern of
distribution of β III tubulin in the soma of neurons of SCZ
patients [4]; plasma-levels of β III tubulin were observed to
be increased in SCZ patients treated with clozapine (which
may indicate more severe or treatment resistant SCZ) com-
pared to HC, while patients treated with other antipsychotics
or who were in first-episode of psychosis (no treatment)
showed no change in β III tubulin [23].

Recent work using iPS cells has indicated that there may
be sex-specific differences in differentiation, gene expres-
sion and protein expression [1, 29], a factor that, due to the
gender distribution of patients included in this study, could
have influenced our analysis and limit the impact of our con-
clusions. This is potentially a significant limitation in this
work that will need to be further assessed in future studies.
It is worth noting though that none of the genes coding for
the cellular markers examined in this paper are on sex chro-
mosomes nor were found to contribute to SCZ diagnosis by
sex interaction in a previous study in neurons derived from
iPS cells [29].

We finally observe that several studies in the literature
have already identified a number of phenotypes as poten-
tially associated with neural cells from SCZ patient-derived
hiPSCs many results. While the analysis found in these stud-
ies is usually carried out in the form of hypothesis testing
over samples of populations, in this work, we have pursued
a machine learning approach to predict disease status (SCZ
vs HC) or perturbation (GSK3i vs Vehicle) by interrogat-
ing imaging data at a single cell level. As discussed in a re-
cent perspective by Li and Tong [15], hypothesis testing and
supervised classification are different in nature where ”the
former concerns an unobservable population-level property
of a feature, while the latter pertains to an observable la-
bel of an instance”. The two methods can successfully com-
plement each other, with hypothesis testing informing the
construction of a classifier and, in turn, the classifier mo-
tivating the formulation of scientific questions to be inves-

tigated by hypothesis testing. Specifically, our application
of supervised classification pertains the prediction of dis-
ease or GSK3 inhibition based on single-cell image-based
features pointing out to the role of a class of cytoskeleton
alterations. By formulating the study of structural alter-
ations in fluorescent images of hiPSCs of SCZ patients as
supervised classification problem, our approach provides a
framework to establish with statistical rigour a quantitative
relationship between image-based features associated with
alterations of the cytoskeleton and SCZ or GSK3 inhibition.
The same method can be implemented in combination with
other image-based markers to reveal additional molecular or
cellular components that could be relevant to explain critical
mechanisms underlying SCZ and possibly other psychiatric
disorders.
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