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Abstract

It is well known that the continuous wavelet transform has the ability to iden-
tify the set of singularities of a function or distribution f . It was recently shown
that certain multidimensional generalizations of the wavelet transform are useful
to capture additional information about the geometry of the singularities of f . In
this paper, we consider the continuous shearlet transform, which is the mapping
f ∈ L2(R2) → SHψf(a, s, t) = 〈f, ψast〉, where the analyzing elements ψast form an
affine system of well localized functions at continuous scales a > 0, locations t ∈ R2,
and oriented along lines of slope s ∈ R in the frequency domain. We show that the
continuous shearlet transform allows one to exactly identify the location and orien-
tation of the edges of planar objects. In particular, if f =

∑N
n=1 fnχΩn where the

functions fn are smooth and the sets Ωn have smooth boundaries, then one can use
the asymptotic decay of SHψf(a, s, t), as a → 0 (fine scales), to exactly characterize
the location and orientation of the boundaries ∂Ωn. This improves similar results
recently obtained in the literature and provides the theoretical background for the
development of improved algorithms for edge detection and analysis.
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1 Introduction

Let A be the affine group on R2, consisting of the pairs (M, t) ∈ GL2(R)×R2,
with group operation (M, t) · (M ′, t′) = (MM ′, t + Mt′). The affine systems
generated by ψ ∈ L2(R2) are obtained from the action of the quasi regular
representation of A on ψ, and are the collections of functions of the form

{
ψM,t(x) = | det M |− 1

2 ψ(M−1(x− t)) : (M, t) ∈ A
}
.

Let Λ ⊂ A be defined by {(M, t) : M ∈ G, t ∈ R2} where G is a subset of
GL2(R). If there is a function ψ ∈ L2(R2) such that any f ∈ L2(R2) can be
recovered via the reproducing formula

f =
∫

R2

∫

G
〈f, ψM,t〉ψM,t dλ(M) dt,

where λ is a measure on G, then ψ is a continuous wavelet with respect to
Λ. In this case, the continuous wavelet transform (with respect to Λ) is the
mapping

f →Wψf(M, t) = 〈f, ψM,t〉, (M, t) ∈ Λ.

There is a variety of examples of wavelet transforms [18,24]. The simplest case
is when the matrices M in the dilations group G have the form M(a) = a I,
where a > 0 and I is the identity matrix. In this situation, the continuous
wavelet transform of f ,

Wψf(a, t) = a−1
∫

R2
f(x) a−1 ψ(a−1(x− t)) dx, (1)

is isotropic since the dilation factor a is the same for all coordinate directions.
Notice that this is the “standard” continuous wavelet transform used in a large
part of the wavelet literature.

A remarkable property of the continuous wavelet transform Wψ(a, t) is its
ability to identify the singularities of a signal f . In fact, using an appropriate,
well-localized continuous wavelet ψ, the continuous wavelet transform will
signal the location of the singularities of f through its asymptotic decay at
fine scales. Namely, if f is smooth apart from a discontinuity at a point x0, then
the isotropic wavelet transformWψf(a, t) will decay rapidly as a approaches 0,
unless t is near x0 [15,22]. Thus, the locations for the slow decay of Wψf(a, t),
as a → 0, can be used to resolve the singular support of f , that is, the set of
points where f is not regular.
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However, the isotropic wavelet transform is unable to provide additional infor-
mation about the geometry of the set of singularities of f . In many situations,
such as in the study of the propagation of singularities associated with PDEs
or in image processing applications concerning the detection and analysis of
edges, it is useful to not only identify the location of singularities, but also their
geometrical properties, such as, for example, the orientation and curvature of
discontinuity curves. For that, one needs to consider alternative transforms
which are able to capture such features. In particular, this can be achieved
by considering continuous wavelet transforms which take full advantage of the
affine group structure associated with the affine systems.

In some previous work [8,16,17], the authors and their collaborators have
shown that the continuous wavelet transforms associated with the shearlet
groups have exactly such desirable properties. For each 0 < α < 1, a shearlet
group is a subgroup of the affine group A consisting of the elements (Mas, t),

where Mas =
(

a −aα s

0 aα

)
, a > 0, s ∈ R, and t ∈ R2. Notice that Mas is the

product of the matrices Bs Aa, where Aa =
(

a 0

0 aα

)
is an anisotropic dilation

matrix, and Bs =
(

1 − s

0 1

)
is a non-expanding matrix called shear matrix. The

continuous wavelet transform associated with the shearlet group is called the
continuous shearlet transform. For each 0 < α < 1, this is the mapping

f → SHα
ψf(a, s, t) = 〈f, ψast〉,

on the transform domain {(a, s, t) : a > 0, s ∈ R, t ∈ R2}, where the analyzing
elements ψast, called shearlets, are the affine functions

ψast(x) = | det Mas|− 1
2 ψ(M−1

as (x− t)),

and form a collection of well localized functions at various scales, orientations
and locations, controlled by the variables a, s and t, respectively. Hence, unlike
the isotropic wavelet transform Wψf(a, t), given by (1), the shearlet transform
depends on three variables: the scale a, the shear s and the translation t. This
transform has several similarities to the continuous curvelet transform, previ-
ously introduced by Candès and Donoho [3]. Notice however that analyzing
elements of the curvelet transform do not form an affine system.

By combining the localization properties of the traditional (isotropic) wavelet
transform with the ability to capture the geometry of two-dimensional func-
tions, the continuous shearlet transform, as well as the curvelet transform,
have been shown to be particularly effective in describing both the location
and the orientation of distributed singularities. Indeed these transforms decay
rapidly at points where a function f is regular. This is not necessarily true for
the points where f is discontinuous.

Recall that these properties play a basic role in the fundamental sparsity result
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of curvelets [2], where it is proved that curvelet coefficients of a function f
have rapid decay for locations where f is regular. For t on a discontinuity
curve, and normal orientation θ, the curvelet coefficients decay as

|〈f, ψj,θ,t〉| ≤ C 2−
3
4
j, j →∞.

This upper bound estimate, however, does not guarantee that the curvelet co-
efficients have necessarily slow decay rate (as 2−

3
4
j) at t. To effectively “detect”

the discontinuity, one has to show that an appropriate lower bound estimates
also holds (the study of such lower estimates will be a significant part of our
results below).

The goal of this paper is to use the continuous shearlet transform to provide a
very precise description of “edge” discontinuities. Indeed we will show that, if a
2-dimensional function f consists of several smooth regions Ωn, n = 1, . . . , N ,
separated by smooth boundaries γn, at which jumps occur, then the continuous
shearlet transform SHα

ψf(a, s, t) will signal the location and orientation of the
boundaries through its asymptotic decay at fine scales. For example, when
α = 1/2, the locations and orientations associated with the slow decay at fine
scale,

SH
1
2
ψf(a, s, t) ∼ a

3
4 a → 0,

are exactly those of the boundary curves γn.

This is a refinement of the results from [16], where it is proved that the con-
tinuous shearlet transform exactly characterizes the wavefront set of a distri-
bution. 2 More precisely, it is proved that the wavefront set of a distribution f

is the closure of the set of (s, t) near which SH
1
2
ψf(a, s, t) is not of rapid decay

as a → 0.

Our study is motivated by image applications, where f is used to model an
image, and the curves γn are the edges of the image f . The results presented in
this paper, combined with the mathematical structure of the shearlet trans-
form which is amenable to efficient numerical implementations, makes the
shearlet based approach very effective for the design of improved edge detec-
tion and analysis algorithms. This is confirmed by preliminary numerical tests
conducted by one of the authors and his collaborators [25]. A more detailed
study of the numerical applications of the shearlet approach to edge detection
will appear in a separate paper.

The paper is organized as follows. In Section 2 we recall the definition and
basic properties of the shearlet transform. In Section 3 we examine in detail
the shearlet transform of the characteristic function of a disc (Section 3.1)
and of more general convex bodies with nonvanishing curvature (Section 3.2).

2 A similar result is obtained by using the continuous curvelet transform [3].
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In Section 4, we extend these results to the case of more general compactly
supported functions.

2 The shearlet transform

We recall the basic properties of the shearlet transform, which was introduced
in [16]. Consider the subspace of L2(R2) given by L2(C)∨ = {f ∈ L2(R2) :
supp f̂ ⊂ C}, where C is the “horizontal cone” in the frequency plane:

C = {(ξ1, ξ2) ∈ R2 : |ξ1| ≥ 2 and | ξ2
ξ1
| ≤ 1}.

The following proposition, which is a simple generalization of a result from [16],
provides sufficient conditions on the function ψ for obtaining a reproducing
system of continuous shearlets on L2(C)∨.

Proposition 2.1 Let 0 < α < 1, and consider the shearlet group Λα =

{(Mas, t) : 0 < a ≤ 1
4
, −3

2
≤ s ≤ 3

2
, t ∈ R2}, where Mas =

(
a −aα s

0 aα

)
. For

ξ = (ξ1, ξ2) ∈ R2, ξ2 6= 0, let ψ be given by

ψ̂(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2(
ξ2
ξ1

),

where:

(i) ψ1 ∈ L2(R) satisfies the Calderòn condition

∫ ∞

0
|ψ̂(aξ)|2 da

a2α
= 1 for a.e. ξ ∈ R,

and supp ψ̂1 ⊂ [−2,−1
2
] ∪ [1

2
, 2];

(ii) ‖ψ2‖L2 = 1 and supp ψ̂2 ⊂ [−1, 1].

Then, for all f ∈ L2(C)∨,

f(x) =
∫

R2

∫ 3
2

− 3
2

∫ 1
4

0
〈f, ψast〉ψast(x)

da

a2+2α
ds dt,

with convergence in the L2 sense, where ψast(x) = | det Mas|− 1
2 ψ(M−1

as (x− t)).

If the assumptions of Proposition 2.1 are satisfied, we say that the functions

Ψ = {ψast : 0 < a ≤ 1
4
, −3

2
≤ s ≤ 3

2
, t ∈ R2}

are continuous shearlets for L2(C)∨ and that the corresponding mapping from
f ∈ L2(C)∨ into SHα

ψf(a, s, t) = 〈f, ψast〉 is the continuous shearlet transform
on L2(C)∨ with respect to Λα.

5



Observe that, in the frequency domain, a shearlet ψast has the form:

ψ̂ast(ξ1, ξ2) = a
1+α

2 ψ̂1(a ξ1) ψ̂2(a
α−1( ξ2

ξ1
− s)) e−2πiξt.

This shows each function ψ̂ast has support:

supp ψ̂ast ⊂ {(ξ1, ξ2) : ξ1 ∈ [− 2
a
,− 1

2a
] ∪ [ 1

2a
, 2

a
], | ξ2

ξ1
− s| ≤ a1−α}.

That is, its frequency support is a pair of trapezoids, symmetric with respect
to the origin, oriented along a line of slope s. The support becomes increasingly
thin as a → 0. This is illustrated in Figure 1.

The case α = 1
2

corresponds to the so-called parabolic scaling, and plays a
special role in the sparsity result of shearlets and curvelets (see [2,11]). Unlike
the sparsity result, however, we will show that the shearlet transform SHα

ψ for
all α ∈ (0, 1) is effective to detect edges. Indeed we will see that the case α 6= 1

2

provides some interesting observations (see remarks after Theorem 3.3).

HHY
(a, s) = ( 1

32
, 1)@

@@R

(a, s) = (1
4 , 0)

6

(a, s) = ( 1
32

, 0)

ξ1

ξ2

Fig. 1. Support of the shearlets ψ̂ast (in the frequency domain) for different values
of a and s.

There are a variety of examples of functions ψ1 and ψ2 satisfying the assump-
tions of Proposition 2.1. In particular, one can find a number of such examples
with the additional property that ψ̂1, ψ̂2 ∈ C∞

0 [10,16]. For the kind of applica-
tions which will be described in this paper, some further additional properties
are needed. In particular, we will require that ψ̂1 is a smooth odd function,
and that ψ̂2 is an even smooth function which is decreasing on [0, 1). We
refer to Appendix A for details about their constructions. In the following,
throughout the paper, we will assume that the functions ψ1 and ψ2 satisfy
these assumptions.

As shown by Proposition 2.1, the continuous shearlet transform SHα
ψ provides

a reproducing formula only for functions in a proper subspace of L2(R2). To
extend the transform to all f ∈ L2(R2), we can introduce a similar transform
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to deal with the functions supported on the “vertical cone”:

C(v) = {(ξ1, ξ2) ∈ R2 : |ξ2| ≥ 2 and | ξ2
ξ1
| > 1}.

Specifically, let
ψ̂(v)(ξ) = ψ̂(v)(ξ1, ξ2) = ψ̂1(ξ2) ψ̂2(

ξ1
ξ2

),

where ψ̂1, ψ̂2 satisfy the same assumptions as in Proposition 2.1, and consider
the shearlet group Λ(v)

α = {(Nas, t) : 0 < a ≤ 1, −3
2
≤ s ≤ 3

2
, t ∈ R2}, where

Nas = MT
as. Then it is easy to verify that the functions

Ψ(v) = {ψ(v)
ast = | det Nas|− 1

2 ψ(v)(N−1
as (x− t)) : 0 < a ≤ 1

4
, −3

2
≤ s ≤ 3

2
, t ∈ R2}

are continuous shearlets for L2(C(v))∨. The corresponding transform SH(v),α
ψ f(a, s, t) =

〈f, ψ
(v)
ast〉 is the continuous shearlet transform on L2(C)∨ with respect to Λ(v)

α .
Finally, by introducing an appropriate window function W , we can represent
the functions with frequency support on the set [−2, 2]2 as

f =
∫

R2
〈f,Wt〉Wt dt,

where Wt(x) = W (x−t). As a result, we can represent any function f ∈ L2(R2)
with respect of the full system of shearlets, as consisting of the horizontal
shearlets ψast, the vertical shearlets ψ

(v)
ast, and the coarse-scale isotropic func-

tions Wt. We refer to [16] for more details about this representation. For our
purposes, it is only the behavior of the fine-scale shearlets that matters. Indeed,
in the following, we will apply the continuous shearlet transforms SHα

ψ and

SH(v),α
ψ , at fine scales (a → 0), to resolve and precisely describe the boundaries

of certain planar regions.

Finally, we recall that the discrete analogs of the continuous shearlet trans-
form and continuous shearlets have been developed by the authors and their
collaborators in [9–13,17].

3 Shearlet analysis of step edges

We will start by considering the behavior of the continuous shearlet transform
of functions of the form f = χC , where χC is the characteristic function of a
planar region. This can be seen as a model of an image containing a step edge
along the curve described by the boundary of C. More general functions will
be examined in Section 4.

Since the properties of the “horizontal” continuous shearlet transform SHα
ψ

are essentially identical to those of the “vertical” continuous shearlet trans-
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form SH(v),α
ψ , in the following, it will be sufficient to examine the horizontal

transform only.

3.1 Shearlet analysis of circular edges

We start with the case of circular edges. Let D(R, x0) be the ball in R2 of
radius R > 0 and center x0, and BR,x0(x) be the characteristic function of
D(R, x0). We will examine the asymptotic decay of the continuous shearlet
transform SHα

ψBR,x0(a, s, t) = 〈BR,x0 , ψast〉, for a → 0.

Observe first that, by a change of variables, we have that

SHα
ψBR,x0(a, s, t) = SHα

ψBR,0(a, s, t− x0).

Thus, there will be no loss of generality in assuming x0 = 0. For simplicity of
notation, in the following we will denote BR = BR,0.

The following results shows that the continuous shearlet transform of BR ex-
actly characterizes the set ∂D(0, R), i.e., the boundary of the disc D(R, 0).
We start first with the case α = 1

2
.

Theorem 3.1 Let t ∈ P = {t = (t1, t2) ∈ R2 : | t2
t1
| ≤ 1}.

If t = t0 = R (cos θ0, sin θ0), for some |θ0| ≤ π
4
, then

lim
a→0+

a−
3
4 SH

1
2
ψBR(a, tan θ0, t0) 6= 0. (2)

If t = t0 and s 6= tan θ0, or if t /∈ ∂D(0, R), then

lim
a→0+

a−γ SH
1
2
ψBR(a, s, t) = 0, for all γ > 0. (3)

For general α ∈ (0, 1), we have the following:

Theorem 3.2 Let t ∈ P = {t = (t1, t2) ∈ R2 : | t2
t1
| ≤ 1} and β(α) be

β(α) =





1− α
2

if 0 < α < 1
2

α+1
2

if 1
2
≤ α < 1.

If t = t0 = R (cos θ0, sin θ0), for some |θ0| ≤ π
4
, then

lim
a→0+

a−β(α) SHα
ψBR(a, tan θ0, t0) 6= 0. (4)
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If t = t0 and s 6= tan θ0, or if t /∈ ∂D(0, R), then

lim
a→0+

a−γ SHα
ψBR(a, s, t) = 0, for all γ > 0. (5)

Hence, the continuous shearlet transform SHα
ψBR(a, s, t) has “slow” decay only

for t = t0 on ∂D, the boundary of the disc D(0, R), and for values of the shear
variable s = tan θ0 corresponding to the normal orientation to ∂D at t0. For
all other values of t and s the decay is fast. This behavior is illustrated in
Figure 2.

Notice that the theorems only describes the behavior of the continuous shearlet
transform at the points t = (t1, t2) ∈ R2 such that | t2

t1
| ≤ 1. For the points

t ∈ R2 such that | t2
t1
| ≥ 1, it is sufficient to replace the “horizontal” shearlet

transform SHα
ψ by the “vertical” shearlet transform SH(v),α

ψ . Since the behavior

of the transforms SHα
ψ and SH(v),α

ψ on each of those two regions is identical,
in the following we will examine the situation for SHα

ψ only.

Finally, we recall that a result similar to Theorem 3.1 can be found in [3] and
[16], for R = 1. Notice, however, that the proofs provided in those references
do not completely justify the lower bound estimates:

|SH
1
2
ψ(a, s, t)| ≥ C a

3
4 ,

with C > 0, for t on the boundary and s corresponding to normal orientation.
As mentioned above, the lower bound estimate is very important if one wants
to guarantee that the edge is detected. A careful argument is needed in our
proof below to prove that such lower bound estimate (with C > 0) holds.

O(aβ(α))

O(aN)

O(aN)

O(aN)

Fig. 2. Decay of the continuous shearlet transform of the disc D(0, R). On the
boundary, for normal orientation, the shearlet transform decays as O(β(α)). For all
other values of (t, s), the decay is as fast as O(N), for any N ∈ N.

Proof of Theorem 3.1.

For simplicity of notation, in the following we will write SHψf = SH
1
2
ψf .
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A direct computation gives:

SHψBR(a, s, t) = 〈B̂R, ψ̂ast〉
= a

3
4

∫

R

∫

R
ψ̂1(aξ1) ψ̂2(a

− 1
2 ( ξ2

ξ1
− s)) e2πiξt B̂R(ξ1, ξ2) dξ1 dξ2.

For R = 1, the Fourier transform B̂1(ξ1, ξ2) is the radial function:

B̂1(ξ1, ξ2) = |ξ|−1 J1(2π|ξ|),

where J1 is the Bessel function of order 1, whose asymptotic behavior satisfies
[23, Ch.8]:

J1(2π|ξ|) =
1

π
|ξ|− 1

2 cos(2π|ξ| − 3π

4
) + O(|ξ|−3/2) as |ξ| → ∞.

It is convenient to represent the integral above in polar coordinates. For | t2
t1
| ≤

1, |s| ≤ 3
2
, R ≥ R0 > 0 and 1

2
R ≤ r ≤ 2 R, we write t = (t1, t2) as

r (cos θ0, sin θ0), where 0 ≤ |θ0| ≤ π
4
. Thus, we have:

SHψBR(a, s, r, θ0)

= a
3
4

∫ ∞

0

∫ 2π

0
ψ̂1(aρ cos θ)ψ̂2(a

− 1
2 (tan θ − s))e2πiρr cos(θ−θ0)R2 B̂1(Rρ)dθρdρ

= R2a−
5
4

∫ ∞

0

∫ 2π

0
ψ̂1(ρ cos θ)ψ̂2(a

− 1
2 (tan θ − s))e2πi ρr

a
cos(θ−θ0)B̂1(

Rρ

a
)dθρdρ

= R2a−
5
4

∫ ∞

0
η(ρ, a) B̂1(

Rρ

a
) ρ dρ, (6)

where

η(ρ, a) =
∫ 2π

0
ψ̂1(ρ cos θ) ψ̂2(a

− 1
2 (tan θ − s)) e2πi ρr

a
cos(θ−θ0) dθ,

= η1(ρ, a) + η2(ρ, a),

and

η1(ρ, a) =
∫ π

2

−π
2

ψ̂1(ρ cos θ) ψ̂2(a
− 1

2 (tan θ − s)) e2πi ρr
a

cos(θ−θ0) dθ; (7)

η2(ρ, a) =
∫ 3π

2

π
2

ψ̂1(ρ cos θ) ψ̂2(a
− 1

2 (tan θ − s)) e2πi ρr
a

cos(θ−θ0) dθ

=−
∫ π

2

−π
2

ψ̂1(ρ cos θ) ψ̂2(a
− 1

2 (tan θ − s)) e−2πi ρr
a

cos(θ−θ0) dθ. (8)
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In the last equality, we have used the fact that ψ̂1(ρ cos(θ+π)) = ψ̂1(−ρ cos θ) =
−ψ̂1(ρ cos θ). Observe that the support condition of ψ̂2 implies that the inte-
grals (7) and (8) are nonzero only on the set

I = {θ ∈ [−π

2
,
π

2
] : | tan θ − s| ≤ a

1
2}.

Using the asymptotic estimate for J1, for small a we have:

SHψBR(a, s, t)

=
R2

π
a
−5
4

∫ ∞

0
η(ρ, a) R− 3

2 ρ−
3
2 a

3
2

(
cos

(2πRρ

a
− 3π

4

)
+ O((

Rρ

a
)−3/2)

)
ρ dρ

= a
1
4

R
1
2

π
(I + E),

where

I =
∫ ∞

−∞
η(ρ, a) cos

(2πRρ

a
− 3π

4

)
ρ−

1
2 dρ

E =
∫ ∞

−∞
η(ρ, a) O((

Rρ

a
)−3/2) ρ−

1
2 dρ.

We will now show that the function η(ρ, a) vanishes for ρ outside a compact
region which does not contain the origin. To show that this is the case, recall
that the support assumption on ψ̂2 implies that the integrals (7) and (8)

are defined only for θ ∈ I, that is, for θ such that | tan θ − s| ≤ a
1
2 . Since

we assumed that |s| ≤ 3
2
, this inequality implies that | tan θ| ≤ 3

2
+ a

1
2 . For

a small, this implies that the set I reduces to a small interval around the
origin. More precisely, let us assume that a

1
2 ≤ √

3 − 3
2

(indeed we are only
interested to values of a approaching 0). Hence, under this assumption, we
have that | tan θ| ≤ √

3 or |θ| ≤ π/3. At the same time, the assumption on
the support of ψ̂1 implies that the integrals (7) and (8) are non-vanishing only
when 1

2
≤ |ρ cos θ| ≤ 2. Thus, the support of the function η(ρ, ·) must be

contained in the set 1
2
≤ |ρ| ≤ 4. It follows that the integral E is nonzero only

for ρ defined on a compact region which does not contain the origin. Thus,
as a → 0, we have that a−βE = O(a

3
2
−β) → 0 uniformly for s, r, R, for each

β ∈ (0, 1).

It remains to examine the integral I to see under which conditions we have
that lima→0 a−β|SHψBR(a, s, t)| > 0, for some β ∈ (0, 1). The proof will be
divided in several cases depending on the values of s and r.

Case 1: s 6= tan θ0.
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We will examine again the behavior of the integrals (7) and (8). The support
condition on ψ̂2 implies that these integrals are nonzero only for θ such that
| tan θ−s| = | tan θ−tan θ0+tan θ0−s| ≤ a

1
2 . Hence | tan θ−tan θ0| ≥ | tan θ0−

s| − a
1
2 , which implies that, for θ ∈ I, | cos(θ − θ0)

′| = | sin(θ − θ0)| ≥ C0 > 0
uniformly for all small a. Thus, repeated integration by parts on (7) and (8)

yields that, for each N ∈ N there is a CN such that |η(ρ, a)| ≤ CN a
1
2
N . This

implies that a−β I → 0, as a → 0, for any β > 0.

Case 2: s = tan θ0, but r 6= R

It will be convenient to use Euler’s formula for the cosine function and write
the integral I as I = I1 + I2, where

I1 =
e−

3πi
4

2

∫ ∞

0
η(ρ, a) e2πi Rρ

a ρ−
1
2 dρ;

I2 =
e

3πi
4

2

∫ ∞

0
η(ρ, a) e−2πi Rρ

a ρ−
1
2 dρ.

Next, using again equations (7) and (8) to express η as η = η1 + η2 , we can
write I1 = I11 + I12 and I2 = I21 + I22, where, for j = 1, 2 we have

I1j = e−
3πi
4

∫ ∞

0
ηj(ρ, a) e2πi Rρ

a ρ−
1
2 dρ, I2j = e

3πi
4

∫ ∞

0
ηj(ρ, a) e−2πi Rρ

a ρ−
1
2 dρ.

We will now examine the behavior of the integrals (7) and (8) for s = tan θ0.

The support condition of ψ̂2 imposes that a−
1
2 |(tan θ−tan θ0)| ≤ 1, or | tan θ−

tan θ0| ≤ a
1
2 . It follows that there exists δ > 0 such that, for all a < δ, we

have:

1 + tan θ tan θ0 ≥ 1

2
. (9)

Let u = a−
1
2 tan(θ− θ0), which gives that θ = θa(u) = θ0 + tan−1(a

1
2 u). Thus,

we have

η1(ρ, a) = a
1
2 e2πi ρr

a T (a, ρ, r),

η2(ρ, a) =−a
1
2 e−2πi ρr

a T (a, ρ, r),

where

T (a, ρ, r) =
∫ 2

−2
ψ̂1(ρ cos θa(u)) ψ̂2(u(1 + tan θa(u) tan θ0))

× e
−i2π ρr

a
(1− 1√

1+au2
) 1

1 + au2
du.

12



In the last expression we have used the identity tan θ−tan θ0 = tan(θ−θ0)(1+
tan θ tan θ0). Using (9) and the support condition of ψ̂2, it follows that the
integral above is only nonzero for |u| ≤ 2. Observe that θ(n)

a (u) is bounded
for each n ≥ 0, for all 0 < a < δ and for all |u| ≤ 2. Also observe that
lima→0 θa(u) = θ0, uniformly for |u| ≤ 2.

Using the notation introduced above, we have:

I11 =
e−

3πi
4

2
a

1
2

∫ ∞

0
e

2πiρ
a

(R+r) T (a, ρ, r) ρ−
1
2 dρ,

I12 =−e−
3πi
4

2
a

1
2

∫ ∞

0
e

2πiρ
a

(R−r) T (a, ρ, r) ρ−
1
2 dρ,

I21 =
e

3πi
4

2
a

1
2

∫ ∞

0
e−

2πiρ
a

(R−r) T (a, ρ, r) ρ−
1
2 dρ,

I22 =−e−
3πi
4

2
a

1
2

∫ ∞

0
e−

2πiρ
a

(R+r) T (a, ρ, r) ρ−
1
2 dρ.

To estimate the integrals Ikj, k, j = 1, 2, for a → 0, we will integrate by parts
over the variable ρ (notice that both R and r are positive and r 6= R). Observe
that

lim
a→0

1
a
(1− 1√

1+au2 )
1
2
u2

= 1.

This shows that, for a sufficiently small, say a < δ, for some δ > 0, one can
replace 1

a
(1− 1√

1+au2 ) by 1
2
u2. It follows that for each n ≥ 0 there is a constant

Cn such that |dnT
dρn | ≤ Cn, for all 0 < a < δ. Thus, repeated integrating by

parts on the variable ρ for Ikj, k, j = 1, 2, yields that, for each n ≥ 0, there
is a constant Cn such that |Ikj| ≤ Cn an, for 0 < a < δ. This implies that
a−β |Ikj| → 0, as a → 0, for any β > 0.

Case 3: s = tan θ0, r = R

As discussed in the Case 2, we need to examine the integrals Ikj, k, j = 1, 2.
For the same reason as in the Case 2, we have that a−β|Ikk| → 0, for k = 1, 2,
as a → 0. It remains to study I12 and I21.

Notice that lima→0
1
a
(1− 1√

1+au2 ) = u2

2
. Hence, using the fact that sec2 θ0 ≥ 1

and supp (ψ̂2) ⊂ [−1, 1], we have:

lim
a→0

a−
3
4 |SHψBR(a, s, t)|= lim

a→0
a−

3
4 |SHψBR(a, tan θ0, R, θ0)|

=
R

1
2

π
lim
a→0

a−
1
2 |I12 + I21|

13



=

∣∣∣∣∣∣
−e−

3πi
4

2

∫ ∞

0
ψ̂1(ρ cos θ0) ρ−

1
2 h(ρ,R) dρ

+
e

3πi
4

2

∫ ∞

0
ψ̂1(ρ cos θ0) ρ−

1
2 h(ρ,R) dρ

∣∣∣∣∣∣
, (10)

where

h(ρ,R) =
R

1
2

π

∫ 1

−1
ψ̂2(u sec2 θ0) e−πiρRu2

du.

Observe that

−e−
3πi
4

2
h(ρ, R) +

e
3πi
4

2
h(ρ,R)

=
iR

1
2√

2 π

∫ 1

−1
ψ̂2(u sec2 θ0)

(
sin(πρRu2) + cos(πρRu2)

)
du

=

√
2iR

1
2

π

∫ 1

0
ψ̂2(u sec2 θ0)

(
sin(πρRu2) + cos(πρRu2)

)
du.

In the last step we have used the fact that ψ̂2 is even. Using the last equality
in (10), we have

lim
a→0

a−
3
4 |SHψBR(a, tan θ0, R, θ0)|

=

√
2R

π

∣∣∣∣
∫ ∞

0
ψ̂1(ρ cos θ0) ρ−

1
2

∫ 1

0
ψ̂2(u sec2 θ0)

(
sin(πρRu2) + cos(πρRu2)

)
du dρ

∣∣∣∣ .

We claim that there exists a c0 > 0 such that the above limit is larger than c0

for all R ≥ R0 > 0. To save a unnecessary notation, in the following we will
only consider the case θ0 = 0. The argument for a general |θ0| ≤ π

4
is identical.

Let g(ρ,R) = 2R
1
2

∫ 1
0 ψ̂2(u sec2 θ0) (sin(πρRu2) + cos(πρRu2)) du. By the sup-

port condition on ψ̂1, it is clear that our claim is satisfied provided we can
show that:

(A) g(ρ,R) > 0 for each ρ ≥ 1

2
, R > 0;

(B) g(ρ,R) ≥ C > 0 for all ρ ≥ 1

2
, R > R0 > 0.

To show that (A) holds, observe first that

g(ρ,R) =
∫ ρR

0
v−

1
2 ψ̂2(

√
v

ρR
) (sin(πv) + cos(πv)) dv

14



=
∫ ρR

0
v−

1
2 ψ̂2(

√
v

ρR
) sin(πv) dv +

∫ ρR

0
v−

1
2 ψ̂2(

√
v

ρR
) cos(πv) dv

= g1(ρ, R) + g2(ρ,R).

We will start by showing that g1(ρ,R) > 0 for each ρ ≥ 1
2

and each R > 0.

If ρR ≤ 1, it is trivial to see that g1(ρ,R) > 0 since ψ̂2(0) ≥ 1
2
, ψ̂2(x) ≥ 0 on

[0, 1] and sin(πx) > 0 on (0, 1). Now assume that 1 < ρR ≤ 2. Since ψ̂2(x) is
decreasing on (0, 1), we have

g1(ρ,R) =
∫ 1

0
v−

1
2 ψ̂2(

√
v

ρR
) sin(πv) dv +

∫ ρR

1
v−

1
2 ψ̂2(

√
v

ρR
) sin(πv) dv

=
∫ 1

0
v−

1
2 ψ̂2(

√
v

ρR
) sin(πv) dv −

∫ ρR−1

0
(v + 1)−

1
2 ψ̂2(

√
v+1
ρR

) sin(πv) dv

≥
∫ 1

0

(
v−

1
2 ψ̂2(

√
v

ρR
)− (v + 1)−

1
2 ψ̂2(

√
v+1
ρR

)
)

sin(πv) dv > 0.

For ρR > 2, one can find k ≥ 1 and 0 < ζ ≤ 2 such that ρR = 2k + ζ. In this
case, we have:

g1(ρ,R) =
∫ 2k

0
v−

1
2 ψ̂2(

√
v

ρR
) sin(πv) dv +

∫ ρR

2k
v−

1
2 ψ̂2(

√
v

ρR
) sin(πv) dv

= g0(ρ,R) + gζ(ρ,R),

where

g0(ρ,R) =
k−1∑

j=0

∫ 1

0

(
(v + 2j)−

1
2 ψ̂2(

√
v+2j
ρR

)+

− (v + 2j + 1)−
1
2 ψ̂2(

√
v+2j+1

ρR
)
)

sin(πv) dv;

gζ(ρ,R) =
∫ ζ

0
(v + 2k)−

1
2 ψ̂2(

√
v+2k
ρR

) sin(πv) dv.

It is easy to verify that g0 > 0 and gζ ≥ 0 and hence g1 > 0.

Next we consider g2(ρ,R). If ρR ≤ 1
2
, it is trivial to see that g2(ρ,R) > 0 since

cos(πx) > 0 on (0, 1
2
). Now assume that 1

2
< ρR ≤ 3

2
. Since cos(πv) < 0 on

(1
2
, 3

2
), we have

g2(ρ,R) =
∫ 1

2

0
v−

1
2 ψ̂2(

√
v

ρR
) cos(πv) dv +

∫ ρR

1
2

v−
1
2 ψ̂2(

√
v

ρR
) cos(πv) dv

≥
∫ 1

2

0
v−

1
2 ψ̂2(

√
v

ρR
) cos(πv) dv +

∫ 3
2

0
v−

1
2 ψ̂2(

√
v

ρR
) cos(πv) dv

15



≥ c0 ψ̂2(
√

1
2ρR

),

where c0 =
∫ 3

2
0 v−

1
2 cos(πv) dv. Since

∫√ 3π
2

0 cos u2du ≥ 0.4 > 0, it follows that
c0 > 0.

For 3
2

< ρR ≤ 5
2
, since cos(πv) > 0 on (3

2
, 5

2
) , we have:

g2(ρ,R) =
∫ 1

2

0
v−

1
2 ψ̂2(

√
v

ρR
) cos(πv) dv +

∫ 3
2

1
2

v−
1
2 ψ̂2(

√
v

ρR
) cos(πv) dv

+
∫ ρR

3
2

v−
1
2 ψ̂2(

√
v

ρR
) cos(πv) dv

≥
∫ 1

2

0
v−

1
2 ψ̂2(

√
v

ρR
) cos(πv) dv +

∫ 3
2

1
2

v−
1
2 ψ̂2(

√
v

ρR
) cos(πv) dv

≥ c0 ψ̂2(
√

1
2ρR

) > 0.

For ρR > 5
2
, one can find n ≥ 1 and 0 ≤ ζ < 1 such that ρR = 3

2
+ n + ζ. Let

us examine the cases where n is even and odd separately. If n = 2k, for some
k ≥ 1, we have

g2(ρ,R)

≥ ψ̂2(
√

1
2ρR

)
∫ 3

2

0
v−

1
2 cos(πv) dv

+
k−1∑

j=0

∫ 5
2

3
2

(
(v + 2j)−

1
2 ψ̂2(

√
v+2j
ρR

)− (v + 2j + 1)−
1
2 ψ̂2(

√
v+2j+1

ρR
)
)

cos(πv) dv

+
∫ 3

2
+ζ

3
2

(v + 2k)−
1
2 ψ̂2(

√
v+2k
ρR

) cos(πv) dv

≥ c0 ψ̂2(
√

1
2ρR

) > 0.

If n = 2k + 1, for some k ≥ 1, we have

g2(ρ,R)

≥ ψ̂2(
√

1
2ρR

)
∫ 3

2

0
v−

1
2 cos(πv) dv

+
k−1∑

j=0

∫ 5
2

3
2

(
(v + 2j)−

1
2 ψ̂2(

√
v+2j
ρR

)− (v + 2j + 1)−
1
2 ψ̂2(

√
v+2j+1

ρR
)
)

cos(πv) dv

+
∫ 5

2

3
2

(v + 2k)−
1
2 ψ̂2(

√
v+2k
ρR

) cos(πv) dv +

16



−
∫ 3

2
+ζ

3
2

(v + 2k + 1)−
1
2 ψ̂2(

√
v+2k+1

ρR
) cos(πv) dv

≥ c0 ψ̂2(
√

1
2ρR

) > 0.

From the the estimates of g1(ρ,R) and g2(ρ,R), we see that (A) holds. Since

g2(ρ,R) ≥ c0 ψ̂2 (
√

1
2ρR

) for all ρ > 1
2

and all R > 0, and since ψ̂2(x) = ψ̂2(0)

for 0 ≤ x ≤ 1
2
, it follows that, for all ρ > 1

2
and all R > 4, we have g(ρ,R) ≥

g2(ρ,R) ≥ c0 ψ̂2(
√

1
2ρR

) = c0 ψ̂2(0) > 0. This shows that (B) also holds. 2

To prove Theorem 3.2, we will need the following result, which is a special
case of the method of stationary phase (Proposition 8.3 from [23]).

Proposition 3.1 Let φ and ψ be smooth functions. Suppose φ(x0) = φ′(x0) =
0, while φ′′(x0) 6= 0. If ψ is supported in a sufficiently small neighborhood of
x0, then

I(λ) =
∫

Rn
ei λ φ(x) ψ(x) dx = a0 λ−1/2 + O(λ−1),

as λ →∞, where

a0 =

(
2πi

φ′′(x0)

) 1
2

ψ(x0).

Proof of Theorem 3.2.

Many steps in the proof follows by a simple adaptation of the arguments in
Theorem 3.1. In the following, we will indicate where significant new argu-
ments are needed.

Similarly to the proof of Theorem 3.1, we write

SHα
ψBR(a, s, t) = a

α
2

R
1
2

π
(I + E),

where E is negligible, as a → 0,

I =
∫ ∞

−∞
η(ρ, a) cos

(2πRρ

a
− 3π

4

)
ρ−

1
2 dρ

and

η(ρ, a) =
∫ 2π

0
ψ̂1(ρ cos θ) ψ̂2(a

α−1(tan θ − s)) e2πi ρr
a

cos(θ−θ0) dθ.

Now, Case 1 (s 6= tan θ0) and Case 2 (s = tan θ0 and r 6= R) can be discussed
similarly to Theorem 3.1. The remaining Case 3 (s = tan θ0, r = R) requires
the following different argument.

We start by writing I = I11 + I12 + I21 + I22, where

17



I11 =
e−

3πi
4

2
a1−α

∫ ∞

0
e

2πiρ
a

(R+r) T (a, ρ, r) ρ−
1
2 dρ,

I12 =−e−
3πi
4

2
a1−α

∫ ∞

0
e

2πiρ
a

(R−r) T (a, ρ, r) ρ−
1
2 dρ,

I21 =
e

3πi
4

2
a1−α

∫ ∞

0
e−

2πiρ
a

(R−r) T (a, ρ, r) ρ−
1
2 dρ,

I22 =−e−
3πi
4

2
a1−α

∫ ∞

0
e−

2πiρ
a

(R+r) T (a, ρ, r) ρ−
1
2 dρ.

and

T (a, ρ, r) =
∫ 2

−2
ψ̂1(ρ cos θa(u)) ψ̂2(u(1 + tan θa(u) tan θ0))

× e
−i2π ρr

a
(1− 1√

1+a2−2αu2
) 1

1 + a2−2αu2
du.

Similarly to Theorem 3.2, we have that, for any β > 0, a−β|Ikk| → 0, for
k = 1, 2, as a → 0. It remains to study I12 and I21. We consider two subcases:
α < 1

2
and α > 1

2
(the case α = 1

2
was already discussed in Theorem 3.2).

Subcase 1: α < 1
2

Since α < 1/2, we have lima→0
1
a
(1− 1√

1+a2−2αu2 ) = 0. Hence

lim
a→0

T (a, ρ, θ) = ψ̂1(ρ cos θ0) ρ−
1
2

∫ 2

−2
ψ̂2(u sec2 θ0) du.

Thus, by direct computation we have that:

lim
a→0

a
α
2
−1|SHα

ψBR(a, s, t)|
= lim

a→0
a

α
2
−1|SHα

ψBR(a, tan θ0, R, θ0)|

=
R

1
2

π
lim
a→0

aα−1 |I12 + I21|

=
R

1
2

π

∣∣∣∣∣∣
−e−

3πi
4

2

∫ ∞

0
ψ̂1(ρ cos θ0) ρ−

1
2

∫ 2

−2
ψ̂2(u sec2 θ0) du dρ

+
e

3πi
4

2

∫ ∞

0
ψ̂1(ρ cos θ0) ρ−

1
2

∫ 2

−2
ψ̂2(u sec2 θ0) du dρ

∣∣∣∣∣∣

=
R

1
2

π

√
2

2

∫ ∞

0
ψ̂1(ρ cos θ0) ρ−

1
2

∫ 1

−1
ψ̂2(u sec2 θ0) du dρ > 0.

In the last equation, we have used the fact that sec2 θ0 ≥ 1 and supp (ψ̂2) ⊂
[−1, 1].
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Subcase 2: α > 1
2

Since θ(n)
a (u) is uniformly bounded for each n ≥ 0 for all small a and for |u| ≤ 2,

we can apply Proposition 3.1 to T (a, ρ, r), by choosing x0 = 0, φ(u) = −πρRu2

and λ = a1−2α. Hence, recalling that ψ̂2(0) = 1, and that 1
a
(1 − 1√

1+a2−2αu2 )

approaches 1
2
a1−2αu2 as a → 0, we have that

T (a, ρ, r)∼
√
− i

ρR
ψ̂1(ρ cos θ0) a−

1−2α
2

= e
3πi
4 ρ−1/2 R−1/2 ψ̂1(ρ cos θ0) a−

1−2α
2 , as a → 0.

Hence

lim
a→0

a−
1
2 I12 = lim

a→0
−e−

3πi
4

2
a

1−2α
2

∫ ∞

0
T (a, ρ, r) ρ−

1
2 dρ,

= − i

2
R−1/2

∫ ∞

0
ψ̂1(ρ cos θ0) ρ−1 dρ.

Similarly:

lim
a→0

a−
1
2 I21 = − i

2
R−1/2

∫ ∞

0
ψ̂1(ρ cos θ0) ρ−1 dρ.

It follows that

lim
a→0

a−
1+α

2 |SHα
ψBR(a, s, t)|= lim

a→0
a−

1+α
2 |SHα

ψBR(a, tan θ0, R, θ0)|

=
R

1
2

π
lim
a→0

a−
1
2 |I12 + I21|

=
1

π

∫ ∞

0
ψ̂1(ρ cos θ0) ρ−1 dρ > 0. 2

Theorem 3.2 implies the following corollary.

Corollary 3.1 Let t ∈ P , and P , β(α) be defined as in Theorem 3.2. There
is a constant C 6= 0, independent of R > R0 > 0 such that

sup
|s|≤ 3

2
, t∈P

lim
a→0+

a−β(α) SHα
ψBR(a, s, t)

= sup
|θ0|≤π

4

(
lim

a→0+
a−β(α) SHα

ψBR(a, tan θ0, t0)
)

= C 6= 0,

where t0 = R (cos θ0, sin θ0).
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If the order of the limit and sup is reversed with respect to the results in
Corollary 3.1, we obtain the following estimates for the continuous shearlet
transform of BR.

Theorem 3.3 (i) For 1
2
≤ α < 1, there exist constants C1, C2 > 0, indepen-

dent of R ≥ R0, such that

C1≤ lim inf
a→0+

a−
1
2
(1+α) sup

|s|≤ 3
2
, 1

2
R≤|t|≤2R

SHα
ψBR(a, s, t)

≤ lim sup
a→0+

a−
1
2
(1+α) sup

|s|≤ 3
2
, 1

2
R≤|t|≤2R

SHα
ψBR(a, s, t) ≤ C2.

(ii) For 0 < α < 1
2
, there exist constants C1, C2 > 0, independent of R ≥ R0,

such that

C1≤ lim inf
a→0+

a−(1−α
2
) sup
|s|≤ 3

2
, 1

2
R≤|t|≤2R

SHα
ψBR(a, s, t)

≤ lim sup
a→0+

a−(1−α
2
) sup
|s|≤ 3

2
, 1

2
R≤|t|≤2R

SHα
ψBR(a, s, t) ≤ C2 R

1
2 .

Remark: To more precisely characterize the edges of BR, one would like to
have C1 = C2, or, at least, |C1 − C2| as small as possible. It turns out that
this can be achieved by using values of α > 1

2
. The details of this argument

are quite technical and will be omitted.

For the proof of Theorem 3.3, we need the following fact, which can be found
in [23, Ch.8] (Corollary to Proposition 8.2).

Proposition 3.2 Let φ and ψ be smooth functions on [a, b]. For k = 1, 2, if
|φ(k)(x)| ≥ 1 on [a, b], then

∣∣∣∣∣
∫ b

a
eiλφ(x) ψ(x) dx

∣∣∣∣∣ ≤ Ck λ−
1
k

(
|ψ(b)|+

∫ b

a
|ψ′| dx

)

holds when (i) k = 1 or (ii) k = 2 and φ′(x) is monotonic on [a, b]. Here one
can choose C1 = 3 and C2 = 8.

Proof of the Theorem 3.3. In the following, we will use the same C to
indicate different uniform constants. We will refer to the notation introduced
after equation (6) for the expressions of SHα

ψBR, η1, η2 and I.

We will start by obtaining some estimates on the function η1.
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Recall that the integral defining η1, given by (7), is nonzero only on the set
I. Let I1 = {θ : | sin(θ − θ0)| ≥ 1

2
}⋂ I and I2 = I \ I1. Since cos2(θ − θ0) +

sin2(θ−θ0) = 1, it follows that if I2 6= ∅, then | cos(θ−θ0)| ≥ 1
2

on I2. We may
assume that, on I1, sin(θ−θ0) is monotonic, otherwise one can cut I1 into two
intervals, on which sin(θ−θ0) is monotonic. We will write η1 = η11+η12, where
η11 is the integral (7) restricted to I1 and η12 is the integral (7) restricted to
I2.

Since |s| ≤ 3
2

and we are only interested to the small values of a, as in the proof

of Theorem 3.2, we have that | tan θ−s| ≤ a1−α; this implies that | tan θ| < √
3

and hence |θ| < π
3
. It follows that, on the set I, (tan θ)′ = sec2 θ < 4. As a

result, we have that | d
dθ

(ψ̂1(ρ cos θ) ψ̂2(a
α−1(tan θ − s))| ≤ C (ρ + aα−1). Now

we apply the Proposition 3.2 with k = 1 to η11 to obtain that

|η11(ρ, a, r, θ0, s)| ≤ C
a

ρr
(1 + ρ a1−α).

Here we used the fact that |I1| ≤ 2 a1−α. Similarly, by applying Proposition 3.2
with k = 2 to η12, we obtain

|η12(ρ, a, r, θ0, s)| ≤ C

√
a

ρr
(1 + ρ a

1
2 ).

The case for η2 is proved very similarly.

Finally, notice that, as in the proof of Theorem 3.2, the function η(ρ, ·) is
compactly supported away from the origin. Hence, since 1

2
R ≤ r ≤ 2R, from

the above estimates we conclude that

|SHα
ψBR(a, s, t)| ≤C R2 a

1
2
(α−3)

(
(
a

R
)

1
2 +

a

R

)
R− 3

2 a
3
2

= C
(
1 + (

a

R
)

1
2

)
a

1
2
(α+1). (11)

This proves the upper bound in (i). The lower bound of (i) follows from the
calculations for the Case 3 (subcases 2 and 3) in the proof of Theorem 3.2.

For (ii), observe that

|η1(ρ, a, r, θ0, s)|=
∣∣∣∣
∫

I
ψ̂1(ρ cos θ) ψ̂2(a

α−1(tan θ − s)) e2πi ρr
a

cos(θ−θ0) dθ

∣∣∣∣
≤C |I| ≤ C a1−α,

uniformly for ρ, a, r, θ0, s. Similarly for η2. Thus, since η(ρ, ·) is compactly
supported away from the origin we have that

21



|SHα
ψBR(a, s, t)|= a

α
2 R

1
2 |

∫ ∞

0
η(ρ, a) cos

(2πRρ

a
− 3π

4

)
ρ−

1
2 dρ

+
∫ ∞

−∞
η(ρ, a) O((

Rρ

a
)−3/2) ρ−

1
2 dρ|

≤C a(1−α
2
) R

1
2 .

This gives the upper bound in (ii). The lower bound for (ii) follows again from
the calculations for the Case 3 (subcase 1) in the proof of Theorem 3.2. 2

Notice that, as the proof of Theorem 3.3 shows, from the inequality (11) we

deduce an estimate for the upper bound of a−
1
2
(1+α) SHα

ψBR(a, s, t) which is
independent of R. Only for α < 1

2
our argument provides an upper bound for

a−(1−α
2
) SHα

ψBR(a, s, t) which depends on R.

3.2 Step edges along general curves

In this section, we show that the results obtained in Section 3.1 for the charac-
teristic function of the disc can be extended to a larger class of planar regions.

Let C be a convex body in R2 having a smooth boundary with everywhere
positive curvature. Without of loss of generality, we may assume that the
origin is an interior point of C. For any θ ∈ [0, 2π), we define

Θ(θ) = (cos θ, sin θ) ∈ S1

such that there exists exactly one point σ(θ) ∈ ∂C at which the unit outer
normal vector is Θ(θ). Also let K(θ) be the curvature of ∂C at the point σ(θ).
It is well known that both σ(θ) and K(θ) are smooth functions of θ. The
following lemma lists some basic properties of σ(θ). Its proof follows easily
from the assumptions on ∂C.

Lemma 3.1 Let C ⊂ R2 be a convex body having a smooth boundary with
everywhere positive curvature. Then

(i) σ(θ) ·Θ(θ) = sup
x∈∂C

Θ(θ) · x;

(ii) σ′(θ) ·Θ(θ) = 0;

(iii) σ(θ1) 6= σ(θ2) for all θ1, θ2 ∈ [0, 2π).

Notice that Θ(θ + π) = −Θ(θ). Hence Lemma 3.1(ii) implies that σ′(θ + π) ·
Θ(θ) = 0. Next, for any ξ ∈ R2, let ξ = ρ Θ(θ) and define:

g(ξ) = g(ρ, θ) = e
π
4
i ρ−

1
2 K− 1

2 (θ) e−2πiσ(θ)·Θ(θ)ρ. (12)
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Notice that, by Lemma 3.1(i), we have

g(−ξ) = g(ρ, θ + π) = e−
π
4
iρ−

1
2 K− 1

2 (θ + π) e2πiσ(θ+π)·Θ(θ+π)ρ.

The following classical result is due to C.S.Herz [14, Thm.3] (notice that in
[14] the Fourier transform is defined with the positive sign in the exponent;
this explains the minus sign in the expression of χ̂C(ξ) which appears in the
following statement of the theorem).

Theorem 3.4 Let C ⊂ R2 be a convex body having a smooth boundary with
everywhere positive curvature. Then asymptotically, for |ξ| → ∞,

χ̂C(ξ) = − 1

2πi|ξ|
(
g(ξ)− g(−ξ)

)
+ O(|ξ|− 5

2 ),

where g is given by (12).

Observe that, if C = D(R, 0), as in Section 3.1, then K(θ) = R−1, σ(θ) =
R Θ(θ) and, thus,

χ̂D(ξ) =
1

2πi|ξ| |ξ|
−1/2R1/2

(
e2πiR|ξ|e−

πi
4 − e−2πiR|ξ|e

πi
4

)
+ O(|ξ|− 5

2 )

=
1

π
|ξ|−3/2R1/2 sin

(
2πiR|ξ| − π

4

)
+ O(|ξ|− 5

2 )

=
1

π
|ξ|−3/2R1/2 cos

(
2πiR|ξ| − 3π

4

)
+ O(|ξ|− 5

2 ).

The last formula coincides with the expression describing the asymptotic
behavior of the Fourier transform of the characteristic function of the disc
B̂R(ξ) = R2|Rξ|−1J1(2πR|ξ|), which was used in Section 3.1.

In the following, we will also need the following simple observation.

Lemma 3.2 Let σ(θ) and Θ(θ) be defined as above. Then

lim
θ→θ0

(σ(θ0)− σ(θ)) ·Θ(θ)

tan2(θ − θ0)
= −1

2
|σ′(θ0)|2.

Proof. By direct calculation, using De L’Hôpital rule we have:

lim
θ→θ0

(σ(θ0)− σ(θ)) ·Θ(θ)

tan2(θ − θ0)

= lim
θ→θ0

(σ(θ0)− σ(θ)) ·Θ′(θ)
2 tan(θ − θ0) sec2(θ − θ0)
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= lim
θ→θ0

(−σ′(θ)) ·Θ′(θ) + (σ(θ0)− σ(θ)) ·Θ′′(θ)
2[sec4(θ − θ0) + 2 tan2(θ − θ0) sec2(θ − θ0)]

=−1

2
σ′(θ0) ·Θ′(θ0)

=−1

2
|σ′(θ0)|2. 2

Observe that, for any θ, there exist a unique φ ∈ S1 such that σ(θ)
‖σ(θ)‖ = Θ(φ).

Hence, we can write φ as h(θ), where the mapping θ → h(θ) is a diffeomor-
phism on S1.

We can now state the following result which is a generalization of Theorem 3.2.

Theorem 3.5 Let C ⊂ R2 be a convex body having a smooth boundary with
everywhere positive curvature. Let t ∈ P , where P = {r Θ(φ) ∈ R2 : φ ∈
H, 0 ≤ r < ∞} and H = {φ = h(θ) : |θ| ≤ π

4
or |θ − π| ≤ π

4
}, and β(α) be

given by

β(α) =





1− α
2

if 0 < α < 1
2

α+1
2

if 1
2
≤ α < 1.

If t = σ(θ0), for some θ0, then

lim
a→0+

a−β(α) SHα
ψχC(a, tan θ0, σ(θ0)) 6= 0.

If t = σ(θ0) and s 6= tan θ0, or if t /∈ ∂C, then

lim
a→0+

a−γ SHα
ψχC(a, s, t) = 0, for all γ > 0.

Proof. In the following, we will only consider the case α = 1
2
. The case of a

general α ∈ (0, 1) follows by adapting the same ideas we use in Theorem 3.2 for

the disc. For simplicity, in the following we will use the notation SHψ = SH1/2
ψ .

We also recall that s is only defined for |s| ≤ 3
2
.

Using Theorem 3.4, we have:

SHψχC(a, s, t) = 〈χ̂C , ψ̂ast〉
=

∫

R2
ψ̂ast(ξ)χ̂C(ξ)dξ

= a
3
4

∫

R2
ψ̂1(aξ1) ψ̂2(a

− 1
2 (

ξ2

ξ1

− s)) e2πiξt χ̂C(ξ1, ξ2) dξ

=
a

3
4

2πi
(I + E),
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where

I =
∫

R2
ψ̂1(aξ1) ψ̂2(a

− 1
2 (

ξ2

ξ2

− s))
e2πiξt

|ξ|
(
g(−ξ)− g(ξ)

)
dξ;

E = 2πi
∫

R2
ψ̂1(aξ1) ψ̂2(a

− 1
2 (

ξ2

ξ2

− s)) e2πiξt O(|ξ|− 5
2 ) dξ.

It is easy to verify that lima→0 E = 0. Hence it only remains to examine
lima→0 I. To do that, let I = I1 − I2, where

I1 =
∫

R2
ψ̂1(aξ1) ψ̂2(a

− 1
2 (

ξ2

ξ2

− s))
e2πiξt

|ξ| g(−ξ) dξ;

I2 =
∫

R2
ψ̂1(aξ1) ψ̂2(a

− 1
2 (

ξ2

ξ2

− s))
e2πiξt

|ξ| g(ξ) dξ.

Converting ξ to polar coordinates, we have

I1 = e−
π
4
ia−

1
2 (I11 + I12) ,

where

I11 =
∫ ∞

0

∫ π
2

−π
2

ψ̂1(ρ cos θ)ψ̂2(a
− 1

2 (tan θ − s))K− 1
2 (θ + π)e2πi ρ

a
(t+σ(θ+π))·Θ(θ+π)ρ−

1
2 dθdρ;

=
∫ ∞

0

∫ π
2

−π
2

ψ̂1(ρ cos θ)ψ̂2(a
− 1

2 (tan θ − s))K− 1
2 (θ + π)e2πi ρ

a
(t−σ(θ+π))·Θ(θ)ρ−

1
2 dθdρ;

I12 =
∫ ∞

0

∫ 3π
2

π
2

ψ̂1(ρ cos θ)ψ̂2(a
− 1

2 (tan θ − s))K− 1
2 (θ + π)e2πi ρ

a
(t+σ(θ+π))·Θ(θ+π)ρ−

1
2 dθdρ;

=−
∫ ∞

0

∫ π
2

−π
2

ψ̂1(ρ cos θ)ψ̂2(a
− 1

2 (tan θ − s))K− 1
2 (θ)e2πi ρ

a
(t+σ(θ))·Θ(θ)ρ−

1
2 dθdρ

=−
∫ ∞

0

∫ π
2

−π
2

ψ̂1(ρ cos θ)ψ̂2(a
− 1

2 (tan θ − s))K− 1
2 (θ)e2πi ρ

a
(t−σ(θ))·Θ(θ+π)ρ−

1
2 dθdρ.

In the expression of I12, we have used the fact that ψ̂1 is an odd function:
hence ψ̂1(ρ cos(θ + π)) = ψ̂1(−ρ cos θ) = −ψ̂1(ρ cos θ).

Similarly, we write

I2 = e
π
4
ia−

1
2 (I21 + I22) ,

where

I21 =
∫ ∞

0

∫ π
2

−π
2

ψ̂1(ρ cos θ)ψ̂2(a
− 1

2 (tan θ − s))K− 1
2 (θ)e2πi ρ

a
(t−σ(θ))·Θ(θ)ρ−

1
2 dθdρ;
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I22 = −
∫ ∞

0

∫ π
2

−π
2

ψ̂1(ρ cos θ)ψ̂2(a
− 1

2 (tan θ − s))K− 1
2 (θ + π)e2πi ρ

a
(t−σ(θ+π))·Θ(θ+π)ρ−

1
2 dθdρ.

We will now examine the asymptotic decay of the integrals I, as a → 0, for
different values of t and s.

Case 1: t 6∈ ∂C.

Since t 6∈ ∂C, there exists a constant ct > 0 such that infθ∈[0,2π) |t−σ(θ)| = ct.

Let J = {θ : | tan θ−s| ≤ a
1
2}⋂

(−π
2
, π

2
), J1 = {θ : |(t−σ(θ))·Θ(θ)| ≥ ct√

2
}⋂

J ,

and J2 = J \J1. Since the vectors Θ(θ), Θ′(θ) form an orthonormal basis in R2,
it follows that, on the set J2, we have |(t−σ(θ))·Θ′(θ)| ≥ ct√

2
. By Lemma 3.1(ii),

we have that
d

dθ
[(t− σ(θ)) ·Θ(θ)] = (t− σ(θ)) ·Θ′(θ).

Hence we can express each one of the integrals Ikj, for k, j = 1, 2, as a sum of
a term where θ ∈ J1 and another term where θ ∈ J2, and integrate by parts
as follows. On J1, we integrate by parts with respect to the variable ρ; on J2

we integrate by parts with respect to the variable θ. Doing this repeatedly, it
yields that, for any positive integer N , |Ikj| ≤ CN a

N
2 , for k, j = 1, 2. Thus

lima→0 I = 0.

Case 2: t0 = σ(θ0) ∈ P
⋂

∂C, but s 6= tan(θ0).

We will only consider the case |θ0| ≤ π
4
. The argument for θ0 such thta |θ0 −

π| ≤ π
4

is similar. Since |s| ≤ 3
2
, there exists a θ1 such that s = tan θ1 where

|θ1| ≤ π
3

and θ1 6= θ0. From the support assumption of ψ̂2, it follows that
θ → θ1 as a → 0. Also, by Lemma 3.1(iii) it follows that (for all a sufficiently
small) one can assume that infθ∈J |σ(θ0) − σ(θ)| = cθ0 > 0. Now one can
employ the same argument as in Case 1 to conclude that lima→0 I = 0.

Case 3: t0 = σ(θ0) ∈ P
⋂

∂C and s = tan(θ0).

Let us first examine the term I21. We assume that |θ0| ≤ π
4
. As in the proof

of Theorem 3.2, we use the change of variable u = a−
1
2 tan(θ− θ0). Hence, by

applying Lemma 3.2 we have that

lim
a→0

a−
1
2 I21

=
∫ ∞

0
ψ̂1(ρ cos θ0) K− 1

2 (θ0)
∫ 1

−1
ψ̂2(u sec2 θ0) e−iπρ|σ′(θ0)|u2

du ρ−
1
2 dρ.
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Similarly, recalling that Θ(θ + π) = −Θ(θ), we have

lim
a→0

a−
1
2 I12

=−
∫ ∞

0
ψ̂1(ρ cos θ0) K− 1

2 (θ0)
∫ 1

−1
ψ̂2(u sec2 θ0) eiπρ|σ′(θ0)|u2

du ρ−
1
2 dρ.

Also, using the same argument as in Case 2, it is easy to see that |I11| ≤ CN a
N
2

and |I22| ≤ CN a
N
2 . Thus we have

lim
a→0

2πia−
3
4 SHψχC(a, s, t)

= lim
a→0

2πia−
3
4 SHψχC(a, tan(θ0), σ(θ0))

= lim
a→0

e−
πi
4 a−1/2I12 − lim

a→0
e

πi
4 a−1/2I21

=−e−
π
4
i
∫ ∞

0
ψ̂1(ρ cos θ0) K− 1

2 (θ0)
∫ 1

−1
ψ̂2(u sec2 θ0) eiπρ|σ′(θ0)|u2

du ρ−
1
2 dρ

− e
π
4
i
∫ ∞

0
ψ̂1(ρ cos θ0) K− 1

2 (θ0)
∫ 1

−1
ψ̂2(u sec2 θ0) e−iπρ|σ′(θ0)|u2

du ρ−
1
2 dρ

=−
√

2 K− 1
2 (θ0)

∫ ∞

0
ψ̂1(ρ cos θ0)

∫ 1

−1
ψ̂2(u sec2 θ0)

×
(
cos(πρ|σ′(θ0)|u2) + sin(πρ|σ′(θ0)|u2)

)
du ρ−

1
2 dρ.

It follows that

lim
a→0

a−
3
4 |SHψχC(a, tan(θ0), σ(θ0))|

=

√
2

2π
K− 1

2 (θ0)
∫ ∞

0
ψ̂1(ρ cos θ0)

∫ 1

−1
ψ̂2(u sec2 θ0)

×
(
cos(πρ|σ′(θ0)|u2) + sin(πρ|σ′(θ0)|u2)

)
du ρ−

1
2 dρ.

The proof that lima→0 a−
3
4 |SHψχC(a, tan(θ0), σ(θ0))| > 0 now follows exactly

as in Theorem 3.2, by replacing R with |σ′(θ0)|. 2

From Theorem 3.3 we have the corollary

Corollary 3.2 Let H, P, β(α) be defined as in Theorem 3.3. Then there is a
constant c > 0 such that

sup
|s|≤ 3

2
, t∈P

lim
a→0+

a−β(α) SHα
ψχC(a, s, t)

= sup
|θ0|≤π

4

(
lim

a→0+
a−β(α) SHα

ψχC(a, tan θ0, σ(θ0))
)

= c > 0.
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An extension of Theorem 3.3 to the case of a convex body C with boundary
having nonvanishing curvature also follows easily from the argument used
above.

4 Extensions and Generalizations

So far, we have only considered the continuous shearlet transform of character-
istic functions of sets. In order to provide a more realistic model for a certain
class of images containing edges, in this section, we extend our analysis to a
more general class of compactly supported functions, which are not necessarily
constant or piecewise constant.

More precisely, let Ω be a bounded open subset of R2 and assume a smooth
partition

Ω =
L⋃

n=1

Ωn ∪ Γ,

where:

(1) for each n = 1, . . . , L, Ωn is a connected open domain;
(2) each boundary ∂ΩΩn is generated by a C3 curve γn and each of the

boundary curves γn can be parametrized as (ρ(θ) cos θ, ρ(θ) sin θ) where
ρ(θ) : [0, 2π) → [0, 1] is a radius function;

(3) Γ =
⋃L

n=1 ∂ΩΩn, where ∂ΩX denotes the relative topological boundary in
Ω of X ⊂ Ω.

Finally, we define the space E1,3(Ω) as the collection of functions which are
compactly supported in Ω and have the form

f(x) =
L∑

n=1

fn(x) χΩn(x) for x ∈ Ω\Γ

where, for each n = 1, . . . , L, fn ∈ C1
0(Ω) with

∑
|α|≤1 ‖Dαfn‖∞ ≤ C for some

C > 0, and the sets Ωn are pairwise disjoint in measure. Notice that the
definition does not specify the function value along the boundary set Γ. For
each x in a C3 component of Γ, we define the jump of f at x, denoted by [f ]x,
to be

[f ]x = lim
ε→0+

f(x + ε vx)− f(x− ε vx)

where vx is an unit normal vector along Γ at x.

The functions in E1,3(Ω) provide a reasonable model for images where the set
Γ describes the boundaries of different objects. Each un(x) = fn(x) χΩn(x)
models the relatively homogeneous interior of a single object. Notice that sim-
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ilar image models are quite common, for example, in the variational approach
to image processing [6, Ch.3].

For x ∈ R2, L > 0, we denote the cube of center x and side-length 2L by
Q(x, L); that is, Q(x, L) = [−L, L]2 + x. For k = (k1, k2) ∈ Z2, let M ∈ N be
sufficiently large so that each of the boundary curves γn may be parametrized
as either (E(t2), t2) or (t1, E(t1)) in Q( k

M
, 1

M
) if Q( k

M
, 1

M
) ∩ Γ 6= ∅.

We will now examine the behavior of the continuous shearlet transform of
functions f in E1,3(Ω). For simplicity, we will restrict our analysis to the SHα

ψf ,
with α = 1

2
. The extension to the general situation 0 < α < 1 can be easily

obtained by adapting the ideas which will presented in the following for α = 1
2
.

Similarly to Theorems 3.2 and 3.5, we will only consider the “horizontal”
transform; one needs to consider the “vertical” shearlet transform SH(v)

ψ to
deal with the shear variable s for |s| > 1. We have the following result.

Theorem 4.1 Let f ∈ E1,3(Ω) and suppose that the boundary curve γn, for
some n, is parametrized as (E(t2), t2) in Q( k

M
, 1

M
) for some k ∈ Z2, and that

t = (E(t2), t2) ∈ Q( k
M

, 1
2M

) for some t2. If s = −E ′(t2) and |s| ≤ 1 then there
exist positive constants C1 and C2 such that

C1 |[f ]t| ≤ lim
a→0+

a−
3
4 |SHψf(a, s, t)| ≤ C2 |[f ]t|. (13)

If s 6= −E ′(t2) and |s| ≤ 1, then

lim
a→0+

a−
3
4 |SHψf(a, s, t)| = 0. (14)

Theorem 4.1 generalizes the results from Section 3 to functions which are not
necessarily characteristic functions of sets and to sets which are not necessarily
convex. In fact, we allow the curvature to be zero. However, the estimate
we obtain here are weaker than the results from Section 3. In particular,
the estimate (3) for the characteristic function of a disc (and similarly for
other convex bodies whose boundary has nonvanishing curvature) holds for all
γ > 0. On the other hand, for the more general functions in E1,3(Ω), where the
boundaries are not necessarily curved, we can only prove the weaker estimate
(14).

To prove Theorem 4.1, we will need the following result from [16].

Theorem 4.2 For p ∈ R, consider the half-plane

Vp = {(x1, x2) ∈ R2 : x1 ≥ px2}.
Let t = (t1, t2) ∈ R2 be such that t1 = pt2. If s = −p and |s| ≤ 1 then

lim
a→0+

a−
3
4 |SHψχVp(a, s, t)| > 0. (15)
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If s 6= −p, and |s| ≤ 1 then

lim
a→0+

a−
3
4 |SHψχVp(a, s, t)| = 0. (16)

We can now prove Theorem 4.1.

Proof of Theorem 4.1. In the following, we will use the same c to indicate
different uniform constants. Let p and a be positive real numbers such that
3
8

< p < 1
2
, and a be sufficiently small so that Q(0, 2ap) + t ⊂ Q( k

M
, 1

M
) for all

t ∈ Q( k
M

, 1
2M

).

Let t = (t1, t2) be a point on the curve γn. Without loss of generality, one may
assume that t = (0, 0) and the curve γn is parametrized as (E(t2), t2) in the
set Q(0, 2ap) Thus, E(0) = 0. For simplicity, we will assume that E ′(0) = 0.
The proof of the case E ′(0) 6= 0 can be obtained from the case E ′(0) = 0 by
applying a suitable change of coordinates.

Since f ∈ E1,3(Ω), we may write the function f on Q(0, 2ap) as:

f(t1, t2) = f0(t1, t2)χ{t1>E(t2)}∩Q(0,2ap) + f1(t1, t2)χ{t1<E(t2)}∩Q(0,2ap)

where f0 and f1 ∈ C1(Ω). Let

R = {(t1, t2) ∈ Q(0, 2ap) : t1 > E(t2)}.

We will start by considering the case E ′′(0) > 0. In this case, let us consider
the osculating disc D̃ to γn at the origin, which is given by

D̃ = {(t1, t2) ∈ R2 :
(
t1 − 1

E ′′(0)

)2

+ t2
2 ≤ 1

E ′′(0)2}.

For t2 ≤ 1
E′′(0)

, the boundary of D̃ is the half circle

P (t2) =
1

E ′′(0)
−

√
1

E ′′(0)2
− t2

2.

Notice that P (0) = E(0) = 0, P ′(0) = E ′(0) = 0 and P ′′(0) = E ′′(0). Hence,
by computing the power series of E(t2) around t2 = 0 we have

sup
t2∈[−2ap,2ap]

|E(t2)− P (t2)| = O(a3p). (17)

Thus:
∫

Q(0,2ap)
|χR−χD̃| =

∫

R∩D̃
|χR−χD̃|+

∫

(R∪D̃)c∩Q(0,2ap)
|χR−χD̃|+

∫

Q(0,2ap)∩(R∆D̃)
|χR−χD̃|,
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where R∆D̃ = (R ∩ D̃c) ∪ (Rc ∩ D̃). Notice that

∫

R∩D̃
|χR − χD̃| = 0 and

∫

(R∪D̃)c∩Q(0,2ap)
|χR − χD̃| = 0,

and that, by (17), we have

∫

Q(0,2ap)∩(R∆D̃)
|χR − χD̃| ≤

∫ 2ap

−2ap
|E(t2)− P (t2)| dt2 ≤ c a4p.

Thus, it follows that ∫

Q(0,2ap)
|χR − χD̃| ≤ c a4p.

From the last equality it follows that

|〈f0(0)χR, ψ0
as0〉 − 〈f0(0)χD̃∩Q(0,2ap), ψas0〉| ≤ |f0(0)| ‖ψas0‖∞

∫

Q(0,2ap)
|χR − χD̃|

≤ c a4p− 3
4 . (18)

Also, by the Mean Value Theorem (recall that f0 ∈ C1) we have

sup
x∈Q(0,2ap)

|f0(x)− f0(0)| ≤ c ap.

Hence, from the last two inequalities, observing that 4p > 3
4

(since p > 3
8
), we

have that

|〈f0χR, ψas0〉 − 〈f0(0)χR, ψas0〉|≤ 〈|f0 − f0(0)|χQ(0,2ap), |ψas0|〉
≤ c ‖ψ‖1 ap a4p− 3

4

≤ c ‖ψ‖1 a
3
4
+p. (19)

Since ψ̂ ∈ C∞
0 , for each n ∈ N, there exists cn > 0 such that |ψ(x)| ≤

cn (1 + |x|)−n. Hence, for 0 < a < 1 and 3
8

< p < 1
2
, we have:

〈χ(Q(0,ap))c , |ψa00|〉≤ cn a−
3
4

∫ ∫

(Q(0,ap))c

(
1 +

√
a−2x2

1 + a−1x2
2

)−n

dx1 dx2

≤ cn a−
3
4

∫ ∫

(Q(0,ap))c

(√
a−1x2

1 + a−1x2
2

)−n

dx1 dx2

(
Converting to polar coordinates with r =

√
x2

1 + x2
2

)

≤ 2π cn a
n
2
− 3

4

∫ ∞

ap
r1−n dr

=
2π cn

n− 2
an( 1

2
−p) a2p− 3

4
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≤ cn an( 1
2
−p). (20)

Notice that Bs (Q(0, 2ap))c ⊂ (Q(0, ap))c for |s| ≤ 1. This implies that

〈χ(Q(0,2ap))c , |ψas0|〉 = 〈χBs (Q(0,2ap))c , |ψ0
a00|〉 ≤ 〈χ(Q(0,ap))c , |ψa00|〉.

Thus, by (20), for |s| ≤ 1 we have that

|〈f χ(Q(0,2ap))c , ψas0〉| ≤ ‖f‖∞ 〈χ(Q(0,2ap))c , |ψas0|〉 ≤ cn a( 1
2
−p)n. (21)

Since D̃ ∩Q(0, 2ap) = D̃ \ (D̃ ∩ (Q(0, 2ap))c), we have that

|〈f0(0) χD̃∩Q(0,2ap), ψ
0
a00〉| = |f0(0)||〈χD̃, ψa00〉 − 〈χD̃∩(Q(0,2ap))c , ψ0

a00〉|.

This implies that

|〈χD̃, ψa00〉| − 〈χ(Q(0,2ap))c , |ψa00|〉≤
|〈f0(0) χD̃∩Q(0,2ap), ψa00〉|

|f0(0)|
≤ |〈χD̃, ψa00〉|+ 〈χ(Q(0,2ap))c , |ψa00|〉.

Hence, by (21) we have

|f0(0) |
(
|〈χD̃, ψa00〉| − cn a( 1

2
−p)n

)
≤ |〈f0(0)χD̃∩Q(0,2ap), ψa00〉|

≤ |f0(0)|
(
|〈χD̃, ψa00〉|+ cn a( 1

2
−p)n

)
.

Finally, using the estimate (2), we conclude that

|〈f0(0) χD̃∩Q(0,2ap), ψa00〉| ∼ |f0(0) |a 3
4 as a → 0+. (22)

We now estimate |〈f0χR, ψa00〉|. Notice that

∣∣∣∣|〈f0χR, ψa00〉| − |〈f0(0)χR, ψa00〉|
∣∣∣∣ ≤ |〈(f0 − f0(0))χR, ψa00〉|.

Hence, by (19) we have that

∣∣∣∣|〈f0χR, ψa00〉| − |〈f0(0)χR, ψa00〉|
∣∣∣∣ ≤ c a

3
4
+p.

Now, using (18) and the last inequality, it follows that

∣∣∣∣|〈f0χR, ψa00〉| − |〈f0(0)χD̃∩Q(0,2ap), ψa00〉|
∣∣∣∣ ≤ c (a4p− 3

4 + ap+ 3
4 ).
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Thus, from the last inequality and (22) it follows that (recall 4p > 3
4
)

|〈f0χR, ψa00〉| ∼ |f0(0) |a 3
4 as a → 0+. (23)

Finally, we estimate |〈fχQ(0,2ap), ψa00〉|. We first observe that

|〈fχQ(0,2ap), ψa00〉|=
∣∣∣〈(f0 χR, ψa00〉+ 〈f1 χQ(0,2ap)∩Rc , ψa00〉

∣∣∣

=
∣∣∣〈(f0 − f1) χR, ψa00〉+ 〈f1 χQ(0,2ap), ψa00〉

∣∣∣ .

Thus:
∣∣∣|〈fχQ(0,2ap), ψa00〉| − |〈(f0 − f1)χR, ψa00〉|

∣∣∣ ≤ |〈f1χQ(0,2ap), ψa00〉|. (24)

By the Mean Value Theorem (since f1 ∈ C1) we have:

sup
x∈Q(0,2ap)

|f1(x)− f1(0)| ≤ c ap.

Hence, arguing again as for inequality (19), we obtain:

|〈f1χQ(0,2ap), ψa00〉| ≤ c ap+ 3
4 + |〈f1(0)χQ(0,2ap), ψa00〉|.

Since
∫
R2 ψa00 =

∫
Q(0,2ap)∪(Q(0,2ap))c ψa00 = 0, (20) implies that, for sufficiently

small a > 0,

|〈f1(0) χQ(0,2ap), ψa00〉| ≤ |〈f1(0) χ(Q(0,2ap))c , ψa00〉| ≤ c a( 1
2
−p)n,

and, thus,
|〈f1 χQ(0,2ap), ψa00〉| ≤ c a( 1

2
−p)n.

Thus, by (24), for sufficiently small a > 0 we have that
∣∣∣∣|〈fχQ(0,2ap), ψa00〉| − |〈(f0 − f1)χR, ψa00〉|

∣∣∣∣ ≤ c a( 1
2
−p)n. (25)

Notice that, for n large enough, a( 1
2
−p)n = o(a

3
4 ). Using the last inequality and

replacing f0 by f0 − f1 in (23) we obtain:

|〈fχQ(0,2ap), ψa00〉| ∼ |[f ]0|a 3
4 as a → 0+.

Since
〈f, ψa00〉 = 〈fχQ(0,2ap), ψa00〉+ 〈fχ(Q(0,2ap))c , ψa00〉,

inequalities (20) and (25) gives the proof of (13) when E ′′(0) > 0. The proof
of the case E ′′(0) < 0 is similar.

When E ′′(0) = 0, we cannot define an osculating disc D̃ to the curve (E(t2), t2)
at the origin as done above. Instead, in this case, we consider the half plane

H̃ = {(t1, t2) ∈ R2 : t1 > 0}.
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Then we can proceed very similarly to what done above. The only significant
difference is that, to obtain (22), we will use the estimate (15) for the half-plane
rather than the estimate (2) for the disc we used above.

To prove (14), we can follow the same structure of the proof described above.
However we will now use estimates (3) and (16) for the non-normal orientation,
rather than estimates (2) and (15) used above for the normal orientation.
2

5 Conclusion

The idea of using wavelet-like continuous transforms for the analysis of the
set of singularities of distributions can be traced back to the notion of wave
packet transforms, introduced independently by Bros and Iagolnitzer [1] and
Córdoba and Fefferman [7]. More recently, Candès and Donoho [3,4] have
introduced the continuous curvelet transform, which uses parabolic scaling
and rotations in polar coordinates and whose decay properties, at fine scales,
can be used to identify the wavefront set of distributions. As mentioned above,
Kutyniok and Labate [16] have proved a similar result using the continuous
shearlet transform. The shearlet approach has the advantage of a simplified
mathematical structure deriving from the use of the affine framework.

In this paper, we focused on the analysis of a special class of functions, con-
sisting of several smooth regions separate by smooth boundaries at which
jumps occur. For these functions, we have refined the wavefront characteri-
zation obtained in [3,16] by showing that the continuous shearlet transform
exactly describes the location and orientation of the boundary set. As men-
tioned above, the functions considered in this paper are useful to model a large
class of images with edges and, thus, our results indicate the great potential
of the shearlet transform for the development of improved algorithms for edge
detection and analysis.

Indeed, traditional wavelet methods such as the Wavelet Transform Modulus
Maxima algorithm [19–21] are frequently applied to edge detection. Despite
their success, these methods have a limited ability to detect the orientations
of singularities, and this affects the accuracy of edge detection algorithms
especially in the presence of noise. In fact, the estimated edge orientation is
typically used to “track” edges and distinguish true edges from noise [5,27]. On
the contrary, we have shown that the shearlet approach is especially adapted to
capture the geometry of edges. Preliminary numerical tests conducted by one
of the authors and his collaborators [25] have shown that a shearlet-based edge
detector significantly outperforms traditional methods in the estimation of the
edge orientation. In addition, its numerical implementation is very efficient,
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thanks to the fast implementation of the shearlet transform obtained in [9]. A
more detailed discussion of the applications of the shearlet transforms to edge
detection and analysis will appear in a separate publication.

Finally, we notice that the results provided in our paper do not address the
situation where the boundaries are not smooth. In the special case where
the boundary is polygonal set, the estimates for the decay of the shearlet
transform are given in [16] (see [4,3] for the curvelet case). The more general
situation of piecewise smooth boundaries requires further investigation and
will be presented elsewhere.

A Construction of ψ̂1, ψ̂2

We briefly describe how to construct functions ψ̂1, ψ̂2 such that: (i) they satisfy
the assumptions of Proposition 2.1; (ii) ψ̂1 is a smooth odd function; (iii) ψ̂2

is an even smooth function which is decreasing for ξ ≥ 0.

(i) Let f ∈ C∞
0 ((1

2
, 2)) such that 0 ≤ f ≤ 1 and f(x0) 6= 0 for some x0 ∈ (1

2
, 2).

By multiplying a suitable constant, we may assume that
∫∞
0

f2(x)
x

dx = 1. Let

ψ̂1(ξ) be the odd extension of f so that ψ̂1 satisfies the admissibility condition
∫∞
0

|ψ̂1(aξ)|2
a

da = 1 for almost ξ ∈ R.

(ii) Let f ∈ C∞
0 ((0, 1)) with f ≥ 0,

∫ 1
0 f(x) dx = 1, f ≥ 1 on (3

4
, 7

8
) and

f = 0 on (0, 1
2
]. This can be obtained from a standard bump function on

(0,1) with value 1 on (3
4
, 7

8
). For x ∈ [0, 1), let g(x) = 1− ∫ x

0 f(s) ds. Let φ(x)
be the even extension of g(x) on (−1, 1). It follows that φ ∈ C∞

0 ((−1, , 1))
with the property that φ is nonnegative and decreasing on [0, 1) such that

φ(x) = φ(0) = 1 for 0 ≤ x ≤ 1
2
. Let ψ̂2(x) = φ(x)∫ 1

−1
|φ(x)|2 dx

. Then it is easy to

verify that ψ̂2 ∈ C∞
0 ((−1, , 1)) with the properties that ψ̂2 is decreasing on

[0, 1),
∫ 1
−1 |ψ̂2(x)|2 dx = 1 and ψ̂2(x) = ψ̂2(0) ≥ 1

2
for 0 ≤ x ≤ 1

2
.
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[7] A. Córdoba, and C. Fefferman, Wave packets and Fourier integral operators,
Comm. Partial Diff. Eq. 3 (1978), 979–1005.

[8] S. Dahlke, G. Kutyniok, P. Maass, C. Sagiv, H.-G. Stark, and G. Teschke, The
uncertainty principle associated with the Continuous Shearlet Transform, Int.
J. Wavelets Multiresolut. Inf. Process., to appear.

[9] G. Easley, D. Labate, and W-Q. Lim Sparse Directional Image Representations
using the Discrete Shearlet Transform, Appl. Computat. Harmon. Anal. 25
(2008), 25–46.

[10] K. Guo, G. Kutyniok, and D. Labate, Sparse multidimensional representations
using anisotropic dilation and shear operators, in: Wavelets and Splines, G.
Chen and M. Lai (eds.), Nashboro Press, Nashville, TN (2006), 189–201.

[11] K. Guo and D. Labate, Optimally sparse multidimensional representation using
shearlets, SIAM J. Math. Anal., 39 (2007), 298–318.

[12] K. Guo, W. Lim, D. Labate, G. Weiss and E. Wilson, Wavelets with composite
dilations, Electron. Res. Announc. Amer. Math. Soc. 10 (2004), 78–87.

[13] K. Guo, W. Lim, D. Labate, G. Weiss and E. Wilson, Wavelets with composite
dilations and their MRA properties, Appl. Comput. Harmon. Anal. 20 (2006),
220–236.

[14] C.S. Herz, Fourier transforms related to convex sets, Ann. of Math. 75 (1962),
81–92.

[15] M. Holschneider, Wavelets. Analysis tool, Oxford University Press, Oxford,
1995.

[16] G. Kutyniok and D. Labate, Resolution of the Wavefront Set using Continuous
Shearlets, to appear in Trans AMS.

[17] D. Labate, W. Lim, G. Kutyniok, and G. Weiss, Sparse multidimensional
representation using shearlets, Wavelets XI (San Diego, CA, 2005), 254–262,
SPIE Proc. 5914, SPIE, Bellingham, WA, 2005.

36



[18] R. S. Laugesen, N. Weaver, G. Weiss, and E. Wilson, A characterization of the
higher dimensional groups associated with continuous wavelets, J. Geom. Anal.
12 (2001), 89–102.

[19] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, San Diego,
1998.

[20] S. Mallat and W. L. Hwang, Singularity detection and processing with wavelets,
IEEE Trans. Inf. Theory 38(2) (1992), 617-643.

[21] S. Mallat and S. Zhong, Characterization of signals from multiscale edges,
IEEE Trans. Pattern Anal. Mach. Intell. 14(7) (1992), 710-732.

[22] Y. Meyer, Wavelets and Operators, Cambridge Stud. Adv. Math. vol. 37,
Cambridge Univ. Press, Cambridge, UK, 1992.

[23] E. M. Stein, Harmonic Analysis: real-variable methods, orthogonality, and
oscillatory integrals, Princeton University Press, Princeton, NJ, 1993.

[24] G. Weiss and E. Wilson, The mathematical theory of wavelets, Proceeding of
the NATO–ASI Meeting. Harmonic Analysis 2000 – A Celebration. Kluwer
Publisher, 2001.

[25] S. Yi, D. Labate, G. R. Easley, and H. Krim, Edge Detection and Processing
using Shearlets, to appear in Proceedings of IEEE Int. Conf. on Image
Processing 2008.

[26] S. Yi, D. Labate, G. R. Easley, and H. Krim, A Shearlet Approach to Edge
Analysis and Detection, preprint (2008) (available at
http://www4.ncsu.edu/ dlabate/publications.html)

[27] D. Ziou, and S. Tabbone, Edge Detection Techniques An Overview,
International Journal of Pattern Recognition and Image Analysis 8(4) (1998),
537–559.

37


